• Title/Summary/Keyword: Evaluation indoor air environment

Search Result 163, Processing Time 0.03 seconds

The Study on Indoor Thermal Environment during Convection Heating - Thermal Comfort by Indoor Air Temperature and Velocity - (대류난방시 실내열환경에 관한 연구 - 온도 및 기류속도에 대한 온열쾌적감-)

  • Kim Dong-Gyu;Chung Yong-Hyun
    • Journal of Environmental Science International
    • /
    • v.14 no.2
    • /
    • pp.209-214
    • /
    • 2005
  • Draft is defined as an unwanted local cooling of the human body caused by air movement. It is a serious problem in many ventilated or air conditioned buildings. Often draft complaints occur although measured velocities in the occupied zone maybe lower than prescribed in existing standards. Purpose of this study is to clarify the evaluation of thermal comfort based on temperature and air velocity in winter. Experiments were performed in an environmental chamber in winter. Indoor temperature and air velocity was artificially controlled. The experiments were performed to evaluate temperature conditions and air velocity conditions by physiological and psychological responses of human. According to physiological responses and psychological responses, it was clear that the optimum air velocity is about 0.15 m/s and 0.30 m/s.

Evaluation of a Large Space Indoor Air Flow Controling System with a CFD code for Enhancing indoor Environment

  • Chung Yong-Hyun;Onishi Junji;Soeda Haruo;Kim Dong-Gyu
    • Journal of Environmental Science International
    • /
    • v.14 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • CFD code are used for numerically testing a new concept of large space air control system. A workshop with air-conditioners products lines and air-conditioned by several floor type air-containers is tested. The whole room air distribution is controlled by boosters installed in a middle height horizontal plane. First, calculated results are compared with measured data to confirm the validity and applicability of the prediction method. Next, the method is applied to case studies heating seasons. Results under some operating conditions show effectiveness in avoid the temperature stratification in winter.

Evaluation of Indoor Thermal Environment and Thermal Sensation in Traditional Ondol Room (전통온돌방의 실내온열환경 및 온열감에 관한 연구)

  • 김난행;손장열
    • Journal of the Korean housing association
    • /
    • v.15 no.2
    • /
    • pp.19-25
    • /
    • 2004
  • The aim of the research was to evaluate the characteristics of indoor thermal environment and thermal sensation in the traditional Ondol room. Indoor thermal factors including air temperature, operative temperature, floor surface temperature, relative humidity, PMV, OT were measured, and survey was carried out to understand subjective responses of resident's related to indoor thermal environment in Ondol room. The analysed houses are: the Chung hyo dang(the head house of Ryu family in Andong) and the Pyeung won jung(the traditional house in Yesan). The purpose of the survey was to know the relationship between resident's sensation and thermal environmental indicators such as air temperature, relative humidity, floor surface temperature, OT. The experimental results have pointed out how Ondol room may lead to comfortable and uniform indoor thermal environments.

Evaluation of Indoor Environment Characteristics through Field Measurement in Large-sized Discount Stores (현장측정을 통한 대형 할인매장의 실내환경 평가)

  • Park Byung-Yoon;Jung Yong-Ho;Ham Heung Don;Sohn Jang-Yeul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.863-872
    • /
    • 2005
  • It is important to control indoor environment for influence on health and comfort of occupants in large-sized discount stores. On the other hand large-sized discount stores have a large number of visitors, vestibules, open spaces, high energy consumption and increasing of outside air intake. This study aims to offer the design data of building services system that can save energy and control environment through field measurement selecting two large-sized discount stores. Indoor environment factors such as temperature, relative humidity, air velocity and concentrations of $CO_2$, CO gas and TSP were measured and evaluated. In each case of $CO_2$, and CO gas, its maximum values were 2,800 ppm and 20 ppm. So proper strategy for the indoor air quality is indispensable in this type of building. Dry bulb temperature varies from $18^{\circ}C$ to $28^{\circ}C$ according to a measuring point and time. From this results, it is inferred these buildings had excessive equipment capacity. In terms of economical and environmental points, these data will be utilized to the design of HVAC system of retail facilities.

Evaluation on Indoor Air Quality by Statistical Analysis of Indoor Air Pollutants Concentration in a Seoul Metropolitan Underground Railway Station (서울시 지하역사 실내오염물질 농도자료의 통계분석을 통한 실내공기질 특성 평가)

  • Yim, Bongbeen;Lee, Kyusung;Kim, Jooin;Hong, Hyunsu;Kim, Jangwon;Jo, Kyung-Ho;Jung, Eulgyu;Kim, Inkyu;An, Yeonsun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.3
    • /
    • pp.233-244
    • /
    • 2014
  • The objective of this study was to explore the characteristics of concentration of indoor air pollutants, such as $PM_{10}$, $CO_2$, and $NO_2$, measured by tele-monitoring system in a Seoul Metropolitan underground railway station from January 1, 2008 to December 31, 2012. The annual average concentration of indoor air pollutants actually varied over a wide range and was found to exhibit marked variation with time and measurement sites (tunnel inlet, platform, and concourse). After installing platform screen doors, the average $PM_{10}$ concentration on platform and concourse was decreased by 43.8% and 31.2%, respectively during the study periods. The relationship between the concentration of $PM_{10}$ and meteorological parameters (relative humidity and rainfall) or the Asian dust events was regarded as statistically significant. The correlations between the number of boarding/alighting passengers and $PM_{10}$, $CO_2$, and $NO_2$ were calculated. A p-value of less than 0.01 was regarded as significant except $NO_2$. The I/O ratio of $PM_{10}$ concentration was elevated after a congested time (about 08:00 am). The average I/O ratios of $NO_2$ were observed in concourse and platform on 03:00 am with $1.76{\pm}0.91$ and $1.50{\pm}0.51$, respectively. The average daily variation of standard excess rate of $PM_{10}$ and $NO_2$ concentration in concourse and platform was investigated. The highest standard excess rate was observed on 21:00 (09:00 pm).

A Study on Indoor Environmental Quality Evaluation in Apartment Buildings - Focus on Apartment Buildings in USA - (공동주택에서의 실내환경의 질 평가에 관한 연구 - 미국 공동주택 사례를 중심으로 -)

  • Yoon, Sung-Hoon
    • Korean Institute of Interior Design Journal
    • /
    • v.18 no.4
    • /
    • pp.79-87
    • /
    • 2009
  • Residential Buildings should provide high-quality, comfortable environments to support the activities of their occupants. The indoor environment of residential buildings, which includes thermal, lighting, acoustic, and indoor air quality, has a significant impact on health and quality of life. The comfortable living environment in residential buildings result from appropriately combining these environmental quality factors, and the performance of building systems must be compatible with the activities of the occupants. The objective of this research is to investigate and analyze the relationship between physical environmental conditions and occupant responses for improving environmental quality (EQ) in apartment buildings with four different building orientations (i.e. E, W, S, N) in two different seasons (i.e. winter and summer). The occupant survey was conducted in actual apartment buildings. The Physical environmental conditions in apartment buildings differed substantially depending on space, outdoor weather conditions and building orientations. Each space within the same apartment building had different environmental conditions. Combinations of unbalanced physical environmental conditions in apartment building decrease occupants' satisfactions and their perceptions of overall residential quality. Occupants' satisfaction and their responses to physical characteristics of their residential environment is related to thermal, lighting, acoustic, and indoor air conditions in their buildings. The result from this research will help designers and researchers to identify problems and develop solutions for improving environmental quality from the occupants' point of view.

An Analysis of Performance Assessment Factors of Indoor Environmental Quality in Multi-Family Housing Using Post Occupancy Evaluation (거주후 평가를 통한 공동주택의 실내환경 성능평가요소 분석에 관한 연구)

  • Lee, Si-Nae;Park, Jin-Chul;Rhee, Eon-Ku
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.128-134
    • /
    • 2011
  • The objective of this study is to analyze the major factors of indoor environment that affect the satisfaction of the occupancy in multi-family residential buildings. The results of this study can contribute to improving the comfort of the residents effectively as they are applied preferentially at the design and construction stages. The indoor environment factors investigated for the analysis included thermal, light, air and the acoustic environment. The individual factors were derived from the 'indoor environment' assessment indices of the green building certificate systems of various countries. Based on these, a questionnaire was prepared to conduct the Post Occupancy Evaluation. The survey results were statistically analyzed.

Evaluation Method for Improvement Efficiency of Indoor Air Quality in Residence (주택의 실내공기질 개선 평가 방법)

  • Yang, Won-Ho;Son, Bu-Soon;Yim, Sung-Kuk
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.4
    • /
    • pp.255-263
    • /
    • 2007
  • Indoor air quality is the dominant contributor to total personal exposure because most people spend a majority of their time indoors. The purposes of this study were to evaluate the alternative method for improvement of indoor air quality in house after coating titanium dioxide ($TiO_2$) photocatalyst for interior part of the house using nitrogen dioxide ($NO_2$) multiple measurements. To evaluate the alternative method in indoor environment, daily indoor and outdoor $NO_2$ concentrations of an apartment and a detached house were daily measured for consecutive 21 days in winter and summer, respectively, Another daily 21 measurements were carried out after $TiO_2$ coating on wall paper of interior part in houses. All $NO_2$ concentrations were measured by passive filter badges. Indoor air quality models using mass balance are useful tool to quantify the relationship between indoor air pollution levels, ambient concentrations, and explanatory variables. Using a mass balance model and linear regression analysis, penetration factor (ventilation rate divided by sum of ventilation rate and decay rate) and source strength factor (emission rate divided by sum of ventilation rate and decay rate) were calculated. Subsequently, the decay constants were estimated. In this study. magnitude of improvement of indoor air quality could be evaluated by decay constant.

Design and Implementation of an Indoor Particulate Matter and Noise Monitoring System (실내 미세먼지 및 소음 모니터링 시스템 설계 및 구현)

  • Cho, Hyuntae
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.1
    • /
    • pp.9-17
    • /
    • 2022
  • As the COVID-19 pandemic situation worsens, the time spent indoors increases, and the exposure to indoor environmental pollution such as indoor air pollution and noise also increases, causing problems such as deterioration of human health, stress, and discord between neighbors. This paper designs and implements a system that measures and monitors indoor air quality and noise, which are representative evaluation criteria of the indoor environment. The system proposed in this paper consists of a particulate matter measurement subsystem that measures and corrects the concentration of particulate matters to monitor indoor air quality, and a noise measurement subsystem that detects changes in sound and converts it to a sound pressure level. The concentration of indoor particulate matters is measured using a laser-based light scattering method, and an error caused by temperature and humidity is compensated in this paper. For indoor noise measurement, the voltage measured through a microphone is basically measured, Fourier transform is performed to classify it by frequency, and then A-weighting is performed to correct loudness equality. Then, the RMS value is obtained, high-frequency noise is removed by performing time-weighting, and then SPL is obtained. Finally, the equivalent noise level for 1 minute and 5 minutes are calculated to show the indoor noise level. In order to classify noise into direct impact sound and air transmission noise, a piezo vibration sensors is mounted to determine the presence or absence of direct impact transmitted through the wall. For performance evaluation, the error of particulate matter measurement is analyzed through TSI's AM510 instrument. and compare the noise error with CEM's noise measurement system.