• 제목/요약/키워드: Evaluation Accuracy

검색결과 3,752건 처리시간 0.04초

고객 선호 변화를 고려한 토픽 모델링 기반 추천 시스템 (A Topic Modeling-based Recommender System Considering Changes in User Preferences)

  • 강소영;김재경;최일영;강창동
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.43-56
    • /
    • 2020
  • 추천 시스템은 사용자가 다양한 옵션 중에서 최선의 선택을 할 수 있도록 도와준다. 그러나 추천 시스템이 상업적으로 성공하기 위해서는 극복할 몇 개의 문제점이 존재한다. 첫째, 추천시스템의 투명성 부족 문제이다. 즉, 추천된 상품이 왜 추천되었는지 사용자들이 알 수 없다. 둘째, 추천시스템이 사용자 선호의 변화를 즉각적으로 반영할 수 없는 문제이다. 즉, 사용자의 상품에 대한 선호는 시간이 지남에 따라 변함에도 불구하고, 추천시스템이 사용자 선호를 반영하기 위해서는 다시 모델을 재구축해야 한다. 따라서 본연구에서는 이러한 문제를 해결하기 위해 토픽 모델링과 순차 연관 규칙을 이용한 추천 방법론을 제안하였다. 토픽 모델링은 사용자에게 아이템이 왜 추천되었는지 설명하는데 유용하며, 순차 연관 규칙은 변화하는 사용자의 선호를 파악하는데 유용하다. 본 연구에서 제안한 방법은 크게 토픽 모델링 및 사용자 프로파일 생성 등 토픽 모델링에 기반한 사용자 프로파일 생성 단계와 토픽에 사용자 선호 확인 및 순차 연관 규칙 발견 등 순차 연관 규칙에 기반한 추천 단계로 구분된다. 벤치마크 시스템으로 협업 필터링 기반 추천 시스템을 개발하고, 아마존의 리뷰 데이터 셋을 이용하여 제안한 방법론의 성능을 비교 평가하였다. 비교 분석 결과, 제안한 방법론이 협업 필터링 기반 추천시스템보다 뛰어난 성능을 보였다. 따라서 본 연구에서 제안하는 추천 방법을 통해 추천 시스템의 투명성을 확보할 수 있을 뿐만 아니라, 시간에 따라 변화하는 사용자의 선호를 반영할 수 있다. 그러나 본 연구는 토픽과 관련된 상품을 추천하기 때문에, 토픽에 포함된 상품의 수가 많을 경우 추천이 정교하지 못하는 한계점이 있다. 또한 토픽의 수가 적기 때문에 토픽에 대한 순차 연관 규칙이 너무 적은 문제점이 있다. 향후 연구에서 이러한 문제점을 해결한다면 좋은 연구가 될 것으로 판단된다.

대기오염에 의한 폐암 및 만성폐색성호흡기질환 -개인 흡연력을 보정한 만성건강영향평가- (Lung cancer, chronic obstructive pulmonary disease and air pollution)

  • 성주헌;조수헌;강대희;유근영
    • Journal of Preventive Medicine and Public Health
    • /
    • 제30권3호
    • /
    • pp.585-598
    • /
    • 1997
  • Background : Although there are growing concerns about the adverse health effect of air pollution, not much evidence on health effect of current air pollution level had been accumulated yet in Korea. This study was designed to evaluate the chronic health effect of ai. pollution using Korean Medical Insurance Corporation (KMIC) data and air quality data. Medical insurance data in Korea have some drawback in accuracy, but they do have some strength especially in their national coverage, in having unified ID system and individual information which enables various data linkage and chronic health effect study. Method : This study utilized the data of Korean Environmental Surveillance System Study (Surveillance Study), which consist of asthma, acute bronchitis, chronic obstructive pulmonary diseases (COPD), cardiovascular diseases (congestive heart failure and ischemic heart disease), all cancers, accidents and congenital anomaly, i. e., mainly potential environmental diseases. We reconstructed a nested case-control study wit5h Surveillance Study data and air pollution data in Korea. Among 1,037,210 insured who completed? questionnaire and physical examination in 1992, disease free (for chronic respiratory disease and cancer) persons, between the age of 35-64 with smoking status information were selected to reconstruct cohort of 564,991 persons. The cohort was followed-up to 1995 (1992-5) and the subjects who had the diseases in Surveillance Study were selected. Finally, the patients, with address information and available air pollution data, left to be 'final subjects' Cases were defined to all lung cancer cases (424) and COPD admission cases (89), while control groups are determined to all other patients than two case groups among 'final subjects'. That is, cases are putative chronic environmental diseases, while controls are mainly acute environmental diseases. for exposure, Air quality data in 73 monitoring sites between 1991 - 1993 were analyzed to surrogate air pollution exposure level of located areas (58 areas). Five major air pollutants data, TSP, $O_3,\;SO_2$, CO, NOx was available and the area means were applied to the residents of the local area. 3-year arithmetic mean value, the counts of days violating both long-term and shot-term standards during the period were used as indices of exposure. Multiple logistic regression model was applied. All analyses were performed adjusting for current and past smoking history, age, gender. Results : Plain arithmetic means of pollutants level did not succeed in revealing any relation to the risk of lung cancer or COPD, while the cumulative counts of non-at-tainment days did. All pollutants indices failed to show significant positive findings with COPD excess. Lung cancer risks were significantly and consistently associated with the increase of $O_3$ and CO exceedance counts (to corrected error level -0.017) and less strongly and consistently with $SO_2$ and TSP. $SO_2$ and TSP showed weaker and less consistent relationship. $O_3$ and CO were estimated to increase the risks of lung cancer by 2.04 and 1.46 respectively, the maximal probable risks, derived from comparing more polluted area (95%) with cleaner area (5%). Conclusions : Although not decisive due to potential misclassication of exposure, these results wert drawn by relatively conservative interpretation, and could be used as an evidence of chronic health effect especially for lung cancer. $O_3$ might be a candidate for promoter of lung cancer, while CO should be considered as surrogated measure of motor vehicle emissions. The control selection in this study could have been less appropriate for COPD, and further evaluation with another setting might be necessary.

  • PDF

신장 방사선 섭취량 결정을 위한 Conjugate View 방법에 대한 평가 (Evaluation of a Conjugate View Method for Determination of Kidney Uptake)

  • 봉정균;윤미진;이종두;김희중;손혜경;권윤영;박해정;김유선
    • 대한핵의학회지
    • /
    • 제39권3호
    • /
    • pp.191-199
    • /
    • 2005
  • 목적: 본 연구의 목적은 신장의 정확한 방사능 섭취량을 얻기 위해서 기하학적 평균 감쇠보정을 이용한 conjugate view 방법(CVM)을 평가하고 Gate 방법과 비교하는 것이다. 대상 및 방법 : 본 연구는 신장의 방사능 섭취량을 시뮬레이션하기 위해서 몬테칼로 코드, SIMIND와 Zubal 팬텀을 사용하였다. 또한 이중 감마카메라를 이용하여 직경 5cm인 팬텀들을 직경 20cm인 실제 팬텀에 삽입하여 실험을 하였다. CVM 방법을 평가하기 위해서 산란과 감쇠가 없는 이상적 데이터와 비교되었다. 또한, CVM 방법을 Gate 방법과 비교하였고, 산란보정의 적용 또는 비적용으로 나누어 CVM 방법을 실행하였다. Gate 방법은 임상에서 사용하는 것처럼 산란보정을 적용하지 않았으며, $0.12cm^{-1}$$0.15cm^{-1}$ 감쇠계수들을 적용하였다. 관심영역 내에 있는 평균계수, 신장영상 위에서 얻어진 프로파일, 선형회귀분석을 이용하여 데이터를 분석하였고, 이상적 데이터와의 상관계수를 계산하였다. 결과: 컴퓨터 시뮬레이션의 경우, 이상적 데이터, CVM 방법, Gate 방법으로부터 얻어진 평균계수들은 각각 (오른쪽: $998{\pm}209$, 왼쪽: $896{\pm}249$), (오른쪽: $911{\pm}207$, 왼쪽: $815{\pm}265$), (오른쪽: $1065{\pm}267$, 왼쪽 $1546{\pm}267$)이었다. CVM 방법은 이상적 데이터와 좋은 상관관계를 보여주었고, 이상적 데이터와 대한 CVM 방법, Gate방법의 상관계수는 각각 (오른쪽: 0.91, 왼쪽: 0.93)와 (오른쪽: 0.85, 왼쪽 0.90)이었다. 결론: 기하학적 평균 감쇠보정을 이용한 CVM 방법은 Gate 방법보다 정량적으로 더 정확한 값을 제공하였다. 결론적으로, 신장 깊이에 영향을 받지 않는 CVM 방법으로 더욱 정확하게 신장의 방사능 섭취량을 측정할 수 있을 것으로 생각된다.

이어도 해양과학기지 관측 파고와 인공위성 관측 유의파고 차이의 특성 연구 (2004~2016) (Characteristics of the Differences between Significant Wave Height at Ieodo Ocean Research Station and Satellite Altimeter-measured Data over a Decade (2004~2016))

  • 우혜진;박경애;변도성;이주영;이은일
    • 한국해양학회지:바다
    • /
    • 제23권1호
    • /
    • pp.1-19
    • /
    • 2018
  • 이어도 해양과학기지 유의파고 자료와 인공위성(GFO, Jason-1, Envisat, Jason-2, Cryosat-2, SARAL) 고도계 유의파고 자료를 비교하기 위하여 2004년 12월부터 2016년 5월까지 약 12년 동안의 위성-이어도 관측 유의파고 사이의 일치점 데이터베이스를 생산하였다. 위성 유의파고는 이어도 해양과학기지 유의파고에 대하여 약 0.34 m의 평균 제곱근 오차와 0.17 m의 양의 편차를 나타내었다. 위성과 이어도 관측 유의파고 차는 특이한 계절변동이나 경년변동을 보이지 않고 위성이 중복 관측하는 기간에 대해서 유사한 변동 특성을 보여 위성 자료의 일관성을 확인할 수 있었다. 위성-이어도 유의파고 차이에 대한 바람장의 영향을 조사한 결과 모든 위성에 대해 평균적으로 0.17 m 정도의 양의 편차가 나타났다. 지형 및 해양과학기지 구조물의 영향을 파악하기 위하여 파향에 대한 파고 오차의 특이성을 분석하였으나 통계적으로 유의미한 특성이 나타나지 않았다. 위성-이어도 일치점의 거리에 따른 영향을 조사하기 위하여 위성-이어도 간의 거리에 대한 함수로 오차의 특성을 분석한 결과 평균은 거리와 무관하게 0.14 m로 거의 일정하게 유지되는 반면에 오차의 최댓값과 최솟값 사이의 진폭은 이어도로부터 멀어질수록 선형적으로 증가하는 특성이 발견되었다. 반면에 동해 해양기상위성부이를 활용한 위성 유의파고 자료의 정확도 평가 결과, 위성-실측 자료 사이의 평균 제곱근 오차는 0.27 m로 상대적으로 작은 오차가 발생하였으며, 이어도 파고 자료와 같이 특이한 오차 특성은 발견되지 않았다. 이어도 파고 관측 기기의 상이성을 고려하여 이 연구에서는 위성 유의파고 자료를 기반으로 이어도 유의파고 자료를 보정하는 식을 제안하였다. 또한 이어도 해양과학기지가 국제적인 해양관측 기지로 격상되기 위해서는 자료의 신뢰도 확보가 우선되어야 함을 강조하고 방법과 전략을 제시하였다.

이탈리안 라이그라스 사일리지의 품질평가를 위한 근적외선분광 (NIRS) 검량식의 이설 및 검증 (Transfer and Validation of NIRS Calibration Models for Evaluating Forage Quality in Italian Ryegrass Silages)

  • 조규채;박형수;이상훈;최진혁;서성;최기준
    • 한국축산시설환경학회지
    • /
    • 제18권sup호
    • /
    • pp.81-90
    • /
    • 2012
  • 본 연구는 종래의 실험실 및 연구용 근적외선 분광분석기를 보급형 현장용 다수의 장비를 이용하여 신속하게 현장에서 조사료의 품질 평가의 예측 정확성을 평가하기 위하여 3년간 전국에서 수집된 이탈리안 라이그라스 사일리지 241점을 이용하여 연구용 장비 Unity Model 2500X에 구축된 Database를 활용하여 현장용 보급형 장비 Unity Model 1400에 맞춰 Database를 업데이트 하고 검량선을 작성 한 후 검량선 이설 알고리즘을 사용하여 검량선 이설결과 연연구용 장비와 거의 동일한 수준의 결과로 0.000%~0.343%로의 차이로서 현장에서 신속하게 NDF, ADF 및 조단백, 조회분등의 화학적 성분 및 수분, pH 젖산의 발효품질, 그리고 TDN, RFV의 조사료 품질 평가치를 실험실 수준과 같이 5분내에 동시에 분석 할수 있는 결과를 얻었다. 하지만 3년 동안 얻어진 검량선 작성용 시료는 유기적인 시료이므로 지역적 년도별 차이를 가져올 수 있다. 이는 향후 모집단에 의한 지속적인 검량식의 업데이트 및 Database 관리기법이 실험실 분석 및 이를 이용 검량식을 유지 관리 할수 있는 중앙 Control Center 의해서 관리되어져야 지속적인 현장분석이 가능하다는 것을 강력히 시사한다. 현장분석기라 하더라도 조사료 같은 농산물은 계속 변화하는 성질을 가지고 있으므로 현장분석시 변위를 쉽게 파악하여 이를 신속히 보강 하지 않으면 장기적인 분석이 되지 않는다. 그동안 여러 근적외선 분광법의 연구들이 이루어져 왔지만 현장에서 직접 사용할 수 없었을 뿐 아니라 지속성의 결여로 장비들이 잘 활용되지 않고 있었다. 조사료 같은 농산물 등은 단기적으로 맞지만 불과 1년 정도가 지나면 분석결과가 상당히 신뢰성이 결여되어 활용도가 떨어지는 현실이다. 결론적으로 조사료의 향후 계속적인 시료의 보강과 모집단 분석을 이용한 체계적인 관리 및 시료의 확충방식을 직관적으로 할 수 있는 GD(Global Distance) 및 ND(Neighbour Distance) 기법의 신호등 방식으로 손쉬운 한글화된 운영체재를 사용하게 된다면 향후 효과적인 분석을 수행할 수 있어 이에 대한 여러 기대효과가 예상되어진다. 마지막으로는 동일 목적으로 다수의 장비를 운영할 경우 장비마다 동일한 시료가 동일한 결과가 나올 수 있도록 하는 기법 및 손쉽게 검량식을 작성 할 수 있는 프로그램과 작성된 검량식을 장비에 직접 기존의 컴퓨터 Network에 연결 전송하고 관리하는 Network 기능이 필수적이라 할 수 있겠다.

PLEIADES 영상을 활용한 비접근지역의 1/5,000 수치지형도 제작 가능성 평가 (Possibility Estimating of Unaccessible Area on 1/5,000 Digital Topographic Mapping Using PLEIADES Images)

  • 신진규;이영진;최해진;이준혁
    • 한국측량학회지
    • /
    • 제32권4_1호
    • /
    • pp.299-309
    • /
    • 2014
  • 본 연구에서는 최근 서비스화 된 PLEIADES의 GSD 0.5m 영상을 이용하여 1/5,000 수치지형도 제작의 가능성을 평가하였다. PLEIADES 영상의 초기 RPC 계수를 적용한 결과, 검사점에 대한 RMSE가 $X={\pm}1.806m$, $Y={\pm}2.132m$, $Z={\pm}1.973m$이며, 초기 RPC 계수와 지상기준점 16점으로 기하보정한 결과, RMSE가 $X={\pm}0.104m$, $Y={\pm}0.171m$, $Z={\pm}0.036m$이며, 검사점에 대한 RMSE는 $X={\pm}0.357m$, $Y={\pm}0.239m$, $Z={\pm}0.188m$로 1/5,000 수치지형도 제작에 대한 허용오차의 기준에 부합하는 것을 확인할 수 있었다. 또한, TerraSAR 기준점을 평가하여 활용 가능성 여부를 확인하기 위해 좌표 변환하여 GPS 측량성과와 비교한 결과, RMSE가 $X={\pm}0.818m$, $Y={\pm}0.200m$, $Z={\pm}0.265m$의 결과를 도출하였다. 본 연구 결과로 PLEIADES 영상과 정확한 지상기준점을 이용하면 1/5,000 수치지형도 제작이 가능하다는 것을 확인하였으며, 비접근 지역의 수치지형도 제작을 위한 기준점 확보 방안으로 TerraSAR 기준점을 평가한 결과, 1/5,000 수치지형도를 제작하기 위한 기준점에는 부합하지는 않았지만, 향후 대안으로써 TerraSAR 기준점을 활용하는 방안에 대하여 추가 연구가 필요하다고 사료된다.

Sentienl-1 SAR 영상을 활용한 유류 분포특성과 CNN 구조에 따른 유류오염 탐지모델 성능 평가 (Evaluation of Oil Spill Detection Models by Oil Spill Distribution Characteristics and CNN Architectures Using Sentinel-1 SAR data)

  • 박소연;안명환;이성뢰;김준우;전현균;김덕진
    • 대한원격탐사학회지
    • /
    • 제37권5_3호
    • /
    • pp.1475-1490
    • /
    • 2021
  • SAR 이미지의 통계적 특징을 이용하여 유류오염영역을 특정하는 방법은 분류규칙이 복잡하고 이상값에 의한 영향을 많이 받는다는 한계가 있어, 최근 인공신경망을 기반으로 유류오염영역을 특정하는 연구가 활발히 이루어지고 있다. 하지만, 다양한 유류오염 사례에 대해 모델의 탐지 성능 및 특성을 평가한 연구는 부족하였다. 따라서, 본 연구에서는 기본적인 구조의 CNN인 Simple CNN과 픽셀 단위의 영상 분할이 가능한 U-net을 이용하여, CNN의 구조와, 유류오염의 분포특성에 따른 모델의 탐지성능차이가 존재하는지 분석하였다. 연구결과, 축소경로만 존재하는Simple CNN과 축소경로와 확장경로가 모두 존재하는U-net의 F1 score는 86.24%와 91.44%로 나타나, 두 모델 모두 비교적 높은 탐지 정확도를 보여주었지만, U-net의 탐지성능이 더 높은 것으로 나타났다. 또한 다양한 유류오염 사례에 따른 모델의 성능 비교를 위해, 유류오염의 공간적 분포특성(유류오염 주변의 육지의 분포)과 선명도(유출된 기름과 해수의 경계면이 뚜렷한 정도)를 기준으로, 유류오염 발생사례를 4가지 유형으로 구분하여 탐지 정확도를 평가하였다. Simple CNN은 각각의 유형에 대해 F1 score가 85.71%, 87.43%, 86.50%, 85.86% 로 유형별 최대 편차가 1.71%인 것으로 나타났으며, U-net은 동일한 지표에 대해 89.77%, 92.27%, 92.59%, 92.66%의 F1 score를 보여 최대 편차가 2.90% 로 두 CNN모델 모두 유류오염 분포특성에 따른 수치상 탐지성능의 차이는 크지 않은 것으로 나타났다. 하지만 모든 유류오염 유형에서 Simple CNN은 오염영역을 과대탐지 하는 경향을, U-net은 과소탐지 하는 경향을 보여, 모델의 구조와 유류오염의 유형에 따라 서로 다른 탐지 특성을 가진다는 것을 확인하였고, 이러한 특성은 유류오염과 해수의 경계면이 뚜렷하지 않은 경우 더 두드러지게 나타났다.

동아시아 지역의 위성 구름탐지 산출물 상호 비교를 통한 품질 평가 (Quality Evaluation through Inter-Comparison of Satellite Cloud Detection Products in East Asia)

  • 변유경;최성원;진동현;성노훈;정대성;심수영;우종호;전우진;한경수
    • 대한원격탐사학회지
    • /
    • 제37권6_2호
    • /
    • pp.1829-1836
    • /
    • 2021
  • 구름탐지란 위성영상내의 픽셀 혹은 화소에서의 구름 유무를 결정하는 것을 의미하며 해당 위성영상의 활용성과 정확도에 영향을 미치는 중요한 요소로 작용한다. 본 연구에서는 구름탐지 자료를 제공해주는 여러 선진기관들의 위성 중에서, GK-2A(GeoKompsat-2A)/AMI(Advanced Meteorological Imager)와 Terra(Earth Observation System-Terra)/MODIS(Moderate-Resolution Imaging Spectroradiometer), Suomi-NPP(The Suomi National Polar-orbiting Partnership)/VIIRS(Visible Infrared Imaging Radiometer Suite)의 구름탐지 자료의 차이에 대해서 정량적 및 정성적으로 비교 분석을 수행하고자 한다. 정량적으로 비교한 결과 1월의 Proportion Correct(PC)지수 값이 GK-2A & MODIS가 74.16%, GK-2A & VIIRS가 75.39%를 나타냈으며 4월의 GK-2A & MODIS는 87.35%, GK-2A & VIIRS는 87.71%로 4월이 1월보다 위성별로 큰 차이 없이 구름을 탐지한 것으로 나타났다. 정성적 비교 결과는 RGB영상과 비교하였을 때, 앞선 정량적 결과들의 경향과 동일하게 1월보다 4월에 해당하는 결과들이 구름을 잘 탐지한 것을 확인할 수 있었으나 얇은 구름이나 적설이 존재하는 경우에는 위성별로 구름탐지 결과에 다소 차이가 존재하였다.

다양한 CAD/CAM 방식으로 제작한 금속하부구조물 간의 변연 및 내면 적합도 비교 연구 (Comparative evaluation of marginal and internal fit of metal copings fabricated by various CAD/CAM methods)

  • 정승진;조혜원;정지혜;김정미;김유리
    • 대한치과보철학회지
    • /
    • 제57권3호
    • /
    • pp.211-218
    • /
    • 2019
  • 목적: 본 연구에서는 CAD/CAM 기술로 제작한 4가지 금속하부구조물의 변연 및 내면 적합도를 비교하여 정확도 및 임상적 효용성을 알아보고자 한다. 재료 및 방법: 상악 중절치 레진모형치아를 삭제한 뒤 복제하여 Ni-Cr 합금 표준 모형을 제작하였다. 이를 공초점 현미경방식의 구강 스캐너를 이용해 12개의 STL 파일을 얻었다. CAD 프로그램 상에서 $50{\mu}m$의 시멘트 공간을 부여한 두께 0.5 mm의 금속하부구조물을 디자인하였다. Co-Cr 금속하부구조물은 다음 4가지 방법으로 제작하였다: Wax pattern milling & Casting (WM), Resin pattern 3D Printing & casting (RP), Milling & Sintering (MS), Selective laser melting (SLM). 변연 및 내면 적합도를 측정하기 위해 실리콘 복제법을 이용하였다. 측정한 결과값은 SPSS 통계 프로그램을 이용하여 일원배치분산분석(one-way ANOVA)으로 통계처리하고, 사후검정으로 Scheffe test를 시행하였으며, 5% 유의수준으로 평가하였다(${\alpha}=.05$). 결과: 변연 적합도는 WM군($27.66{\pm}9.85{\mu}m$)과 MS군($28.88{\pm}10.13{\mu}m$)이 RP군($38.09{\pm}11.14{\mu}m$)에 비해 통계적으로 유의하게 작았다. 치경부 적합도는 MS군이 RP군에 비해 통계적으로 유의하게 작았다. 축면 적합도는 WM군과 MS군이 RP군과 SLM군 보다 통계적으로 유의하게 작았다. 절단면 적합도는 RP군이 통계적으로 유의하게 작았다. 결론: Wax pattern milling & Casting, Milling & Sintering법으로 제작한 Co-Cr coping의 변연과 축면에서의 적합도가 더 우수하였다. 모든 군의 Co-Cr coping의 변연, 치경부, 축면 적합도는 임상적으로 허용할만한 범위 안에 있었다.

영상품질별 학습기반 알고리즘 폐색영역 객체 검출 능력 분석 (Detection Ability of Occlusion Object in Deep Learning Algorithm depending on Image Qualities)

  • 이정민;함건우;배경호;박홍기
    • 한국지리정보학회지
    • /
    • 제22권3호
    • /
    • pp.82-98
    • /
    • 2019
  • 정보화 사회로 진입하면서 공간정보의 중요성은 급격하게 부각되고 있다. 특히 스마트시티, 디지털트윈과 같은 Real World Object의 3차원 공간정보 구축 및 모델링은 중요한 핵심기술로 자리매김하고 있다. 구축된 3차원 공간정보는 국토관리, 경관분석, 환경 및 복지 서비스 등 다양한 분야에서 활용된다. 영상기반의 3차원 모델링은 객체 벽면에 대한 텍스처링을 생성하여 객체의 가시성과 현실성을 높이고 있다. 하지만 이러한 텍스처링은 영상 취득 당시의 가로수, 인접 객체, 차량, 현수막 등의 물리적 적치물에 의해 필연적으로 폐색영역이 발생한다. 이러한 폐색영역은 구축된 3차원 모델링의 현실성과 정확성 저하의 주요원인이다. 폐색영역 해결을 위한 다양한 연구가 수행되고 있으며, 딥러닝을 이용한 폐색영역 검출 및 해결방안에 대한 연구가 수행되고 있다. 딥러닝 알고리즘 적용한 폐색영역 검출 및 해결을 위해서는 충분한 학습 데이터가 필요하며, 수집된 학습 데이터 품질은 딥러닝의 성능 및 결과에 직접적인 영향을 미친다. 따라서 본 연구에서는 이러한 학습 데이터의 품질에 따라 딥러닝의 성능 및 결과를 확인하기 위하여 다양한 영상품질을 이용하여 영상의 폐색영역 검출 능력을 분석하였다. 폐색을 유발하는 객체가 포함된 영상을 인위적이고 정량화된 영상품질별로 생성하여 구현된 딥러닝 알고리즘에 적용하였다. 연구결과, 밝기값 조절 영상품질은 밝은 영상일수록 0.56 검출비율로 낮게 나타났고 픽셀크기와 인위적 노이즈 조절 영상품질은 원본영상에서 중간단계의 비율로 조절된 영상부터 결과 검출비율이 급격히 낮아지는 것을 확인할 수 있었다. F-measure 성능평가 방법에서 노이즈 조절한 영상품질 변화가 0.53으로 가장 높게 나타났다. 연구결과로 획득된 영상품질별에 따른 폐색영역 검출 능력은 향후 딥러닝을 실제 적용을 위한 귀중한 기준으로 활용될 것이다. 영상 취득 단계에서 일정 수준의 영상 취득과 노이즈, 밝기값, 픽셀크기 등에 대한 기준을 마련함으로써 딥러닝을 실질적인 적용에 많은 기여가 예상된다.