• Title/Summary/Keyword: Evacuation stair

Search Result 25, Processing Time 0.03 seconds

Comparison of Evacuation Efficiency for Stair Width and Code for Occupant Load Calculation in High-rise Buildings (고층의 주상복합건축물 계단폭과 수용인원 산정기준에 따른 피난효율의 비교)

  • Lee, Yang-Ju;Ko, Kyoung-Chan;Park, Woe-Chul
    • Fire Science and Engineering
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • An evacuation simulation was carried out to confirm evacuation efficiency for stair width and problems in calculation of occupant load for high-rise buildings. The evacuation time and number of evacuated persons from a 39 story condominium-mercantile building were calculated by using Simulex for stair widths of 1.2 m, 1.5 m, and 1.8 m. The total occupant load based on the Korean code was higher than the number of actual residents by 2.3 times, and that based on the NFPA 101 Life Safety Code by 2.6 times, respectively. For the occupant load based on the Korean code, smaller stair width resulted in lower evacuation efficiencies due to bottlenecks in egress. For the actual residents and NFPA code-based occupant load, a high evacuation efficiency and negligible effects of the stair width on evacuation efficiency were confirmed. It was shown that there was a bottleneck even at the stair width of 1.8 m for the Korean code-based occupants, while the stair width of 1.2 m provided safe egress to the actual residents or NFPA code-based occupants. This recommended further studies on possibility of lowering the level of the Korean code in calculation of the occupant load.

A Study on the Evacuation Time According to the Width of Corridor, Stair and Density of Evacuee in University Education Facilities (대학교육시설(大學敎育施設)의 복도(複道).계단(階段) 폭(幅)과 보행자(步行者) 밀도(密度)가 피난시간(避難時間)에 미치는 영향(影響)에 관한 연구)

  • Lee, Jeong-Soo;Mun, Jae-Ho
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.17 no.1
    • /
    • pp.13-20
    • /
    • 2010
  • The aims of this study are to verify the relationships of evacuee speed and affections to the evacuation time according to the width of corridor and stairs in university education facilities. To achieve these purposes, the present conditions of university education facilities were analyzed, and the evacuation experiments were executed in relation to the width of corridor and stairs. The results of this study are as follows ; (1) The deviations of numbers of residents per stair is very high, and the number and width of stairs, corridors are only depend on the minimum guidelines of building code, not considering the residents' evacuation. (2) The width of corridor and stairs are affects on the evacuation speed and time. The rate of decreasing speed is large in stairs, and also the possibility of danger is increasing depend on the speed and density.

A Experimental Research on Stair Ascent Evacuation Support for Vulnerable People (안전약자 상층 대피 지원에 관한 실험적 연구)

  • Lee, Ji Hyang;Lee, Hyo Jeong;Kwon, Jin Suk;Park, Sang Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.90-97
    • /
    • 2019
  • This study is aiming to compare stair ascent transportation speed and physical burden of evacuation supporters according to the types of stair ascent transportation for vulnerable people experimentally. In this study, we measured heart rate of the supporters to indicate physical burden during the transportation. The subjects of this experiment were male students, age of 20-26. Experimental conditions were the ways of stair transportation and the weight of vulnerable people. The types of stair transportation were giving a piggyback ride and carrying a wheelchair. Each experimental trial was video-recorded for measurement of ascent speed and observing supporters movement. As a result of the experiment, as for the ascent transportation speed by piggyback ride from the first floor to the fourth floor, the average speed of the light case is 31 seconds and for the heavy case is 43 seconds. When it comes to the average speed of wheelchair transportation's average speed the light case is 1 minute and 11 seconds and the heavy case is 1 minute and 49 seconds. Therefore, it was indicated that when the weight of a vulnerable people is lighter, the transportation speed is faster. The heart rates of evacuation supporters are different depending on transportation methods or individual's condition but as repetitive transportation increases, they tend to reach the maximum heart rates.

Evacuation Behaviors under the Corridor and Stair Width Variations in Evacuation Experiments (복도·계단 폭 변화를 통한 피난실험에서 피난행태에 미치는 영향요인 분석)

  • Lee, Jeong-Soo;Kwon, Heung-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2374-2381
    • /
    • 2012
  • The aims of this study are to verify the effecting factors in evacuation behavior under the corridor and stair width variation in evacuation experiments at university education facilities. To achieve these purposes, the present conditions of university education facilities were analyzed, and the evacuation experiment settings were established under different width of corridor and stairs. After the experiments, we asked the effecting variables to the evacuation behaviors under the variation of corridor, stair width and density of evacuee. The results of this study are as follows ; First, we found 3 main factors which affecting the evacuation behaviors ; environmental factors on building conditions, psychological factors on evacuee's characteristics and personal factors on evacuee's physical conditions. Second, the environmental factors such as the location of stairs for evacuation, recognition of wayfinding in fire condition are mainly affects the evacuation behaviors, but evacuee behaviors have little relations with fire extinguishing facilities and personality.

A Study about the Evacuation Guidance that Used Phosphorescent Material for Stairs (축광재료를 부착한 계단의 피난유도에 관한 연구)

  • Hur, Man-Sung;Fujita, Akihiro;Bitosho, Bitosho
    • Fire Science and Engineering
    • /
    • v.22 no.1
    • /
    • pp.29-36
    • /
    • 2008
  • This study is intended to examine the effect of the evacuation guidance that used phosphorescent material for stairs in the event of smoke and failure of both the power to the lighting and illuminated sign. To achieve the purpose, the test stairs was established and 35 students(1st 20, 2nd 15) were examined the visibility, the convenience and the comfort of going up and down of stairs. The results of this study are as follows; The evacuation from stairs showed that the stair nosing and landing used phosphorescent material for was very effective in dark conditions(0 lux) because of the high visibility of stair nosing and the convenience and the comfort of going up and down of stairs. The phosphorescent material located on the stair nosing and stair landing will aid in evacuation from stairs in the event of failure of both the power to the lightings and illuminated sign.

Flow-structure Interaction Analysis for Durability Verification by the Wind Force of Outdoor Evacuation Stairs (옥외형 피난계단의 풍압에 따른 내구성 검증을 위한 유동-구조 연성해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.29 no.3
    • /
    • pp.97-102
    • /
    • 2020
  • In this study, one-way fluid structure interaction analysis was adapted to verify the durability of the outdoor evacuation stair structure operated in the event of a fire when wind pressure caused by a typhoon was applied. To this end, flow analysis was performed with the flow field around the structure of the evacuation stair in a steady state, and the durability was analyzed through structural analysis such as structural stress, deformation, and fatigue life using these analysis results by fluid data input data for structural analysis. As a result of flow numerical analysis, the air flow was different according to the shape of the evacuation stair structure, and this flow velocity distribution generated by the total pressure on the structure surface. Through the structural analysis results calculated by this total pressure, the safety factor calculated as the maximum stress value was found to be more than the safety factor, and durability was proven by fatigue life and deformation analysis.

A study on the Comparison of High-rise building Egress Safety Rule in Countries for improvement of High-rise evacuation safety design criteria (초고층 피난안전설계 기준 개선을 위한 국내외 피난관계법령 비교에 관한 연구)

  • Hwang, EunKyung;Park, SuRoh
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.4
    • /
    • pp.429-438
    • /
    • 2013
  • In this study, compare and analyze for high-rise evacuation safety design criteria improvement about internal high-rise building egress safety rule. To the result, high-rise evacuation safety design criteria improvement data can be summarized as follows. First, should compute the evacuation capacity about the number of persons and when more than 2 exits are requested, over 50% of evacuation capacity must be satisfied even approaching to 1 exit is unable. Second, 2 ways of evacuation can be made smoothly by the stair or exit separation-distance standard regulation. Third, regulate the length limitation of dead-end corridor or passageway and it should give grades in limitation of whether the spring-cooler has been installed. Fourth, must secure the evacuation way and do the evacuee guidance when it's safety area and elevator or stair. Also needs to provide extra safety area to secure horizontal direction Escape Safety except fire escaping floor.

A Study on Safety at Stairs Flow using the Real-scale Hydraulic Model Experiment (실규모 수리모형실험을 이용한 계단 흐름에서의 안전성에 관한 연구)

  • Kim, Myounghwan;Lee, Du Han
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.4
    • /
    • pp.210-218
    • /
    • 2018
  • In this study, a real-scale stairway model was constructed to analyze the evacuation safety of human life due to the change of flooded stair flow. In the experiment, the water depth and flow velocity at each stage of the stairs were measured and the specific force per unit width was calculated. Using the calculated the specific force per unit width, the evacuation safety of each steps of stairs according to the change of the flooded stair flow was presented. Finally, the depth of water measured by the experiment and the evacuation safety graph of "Ishigaki" by the specific force per unit width were combined to analyze the evacuation safety by depth. As a result, it has been found that evacuation of adult man is difficult without help at the flow depth of 0.20 m or more. And it has been found that evacuation of adult women and elderly men are difficult without help at the flow depth of 0.15 m or more. Finally, it has been found that evacuation of elderly women is difficult without help at depth of 0.13 m or more.

A Study on the Calculation of Evacuation Capacity for the Development of Korean Life Safety Standards for Medical facilities (의료시설의 한국형 인명안전기준개발을 위한 피난용량 산정에 관한 연구)

  • Choi, Yun-Ju;Kim, Yun-Seong;Jin, Seung-Hyeon;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.92-93
    • /
    • 2021
  • In the case of medical facilities, the evacuation time is delayed due to the decrease in the number of people in the hallway and exits due to the increase in the width of evacuation by using mobile beds, wheelchairs, crutches, etc. Accordingly, it is considered to secure evacuation capacity to reduce evacuation time according to corridor width and exit width. Accordingly, we would like to compare the standards related to the evacuation capacity of medical facilities in Korea and NFPA, derive differences, and use evacuation simulations to compare evacuation times according to changes in corridor width and exit width. In Korea, it is calculated based on the floor area by use, but in the case of NFPA 101, the number of evacuation routes, stair width, corridor exit width, and two-way door width was stipulated depending on the number of people. Using evacuation simulation, efficient evacuation capacity is calculated according to the reduction of evacuation time by changing the width of the hallway, changing the width of the exit, the width of the corridor, and the width of the exit. The evacuation simulation is intended to be used to secure evacuation safety of domestic medical facilities by calculating the effective evacuation time reduction by changing the width of the hallway and exit.

  • PDF

A Study on Reduction Method of Stack Effect at Stairwell of High-Rise Building (고층건물 피난계단에서의 연돌효과 저감방안 연구)

  • Kim, Jung-Yup;Shin, Hyun-Joon
    • Fire Science and Engineering
    • /
    • v.25 no.5
    • /
    • pp.14-20
    • /
    • 2011
  • As the height of the building increases, the stack effect in stairwell that is main facilities for evacuation becomes stronger. While the pressure rise in stairwell causes difficulties on opening the door for evacuation and has effect on smoke control system, reduction of stack effect will be necessary for providing more safe evacuation environment. The field experiments on pressure field in high-rise building are carried out to present reduction method of stack effect and the numerical analyses using network model are proceeded to design quantitatively the reduction method. As the air flow supplied from outside in lower stair and exhausted to outside in upper stair is formed in stairwell, the stack effect in stairwell is expected to be decreased.