• 제목/요약/키워드: Evacuation safety

검색결과 577건 처리시간 0.024초

대규모 고시원의 피난계단 폭의 변화에 따른 피난소요시간 분석 (Analysis of Evacuation Time According to Variation of Evacuation Stairs' Width in Large-Scale Goshiwons)

  • 오수철;공하성
    • 문화기술의 융합
    • /
    • 제8권5호
    • /
    • pp.641-651
    • /
    • 2022
  • 이 연구는 숙박시설이 있는 특정소방대상물 수용인원의 산정 방법에 따라 피난가능시간을 기준으로 피난시뮬레이션을 실시하여 고시원 화재 발생 시 계단 폭의 변화에 따른 피난소요시간을 비교·분석하였다. 현재 숙박시설로 분류하는 고시원(바닥면적 합계 500m2 이상)은 소방시설법, 건축법, 주차장법이 정하는 맹점을 이용, 적은 면적의 대지 위에 고층으로 건축물을 신축하여, 적지 않은 양의 호실을 만들어 대다수의 고시원이 학생과 고시생을 위한 곳이 아닌 변형된 숙박시설의 형태로 변질되어가고 있다. 이는 건축주의 영업이익에 부합하므로 지속적인 증가 추세를 보일 것으로 예상된다. 고시원 피난 시간의 골든타임 확보는 우리 사회의 경제적 약자에 속하는 고시원 재실자의 최후의 보루로 본 연구가 사회적 안전망 구축을 위한 관계법령의 개정 논의에 시발점이 되길 바라며, 피난시뮬레이션 분석의 결과 피난훈련이 실행된 집단과 피난계단의 폭을 200cm로 확장한 경우에 피난소요시간이 가장 적게 나타났으며, 기존 건물의 계단 폭의 변화 없이 피난시뮬레이션을 실시한 피난소요시간이 648.4초와 시나리오 6을 비교하면 최대166.3초가 단축되는 결과를 보였다. 이와 같은 분석 결과를 통하여 고시원의 피난안전성 개선을 위해 피난계단의 폭을 다중이용업소의 안전관리에 관한 특별법의 안전시설 등 종류에 추가하여 관련 법령의 개정에 활용할 수 있는 근거를 마련했다는 점에서 의의가 있다.

병원 외래진료부에서의 피난 과밀 공간 분석 모델에 관한 연구 (A Space Analysis Model of Evacuation Overcrowding at Hospital Outpatient Department)

  • 이주희;권지훈
    • 대한건축학회연합논문집
    • /
    • 제21권3호
    • /
    • pp.109-116
    • /
    • 2019
  • This study aimed to suggest a quantitative model analyzing overcrowding area under emergency evacuation situation in the outpatient department of hospital. Overall study process included the review on legal conditions of an emergency evacuation, the investigation of precedent research documents and the analysis of spatial configuration. The user movement with considering exit gates and the one without considering exit gates were analyzed for routine activity condition. An agent-based simulation was applied for the analysis. Also, user movement for the emergency condition was tested with evacuation simulation. The variation of simulation conditions revealed the difference between overcrowding spaces from situation change. At all nodes, visit frequencies derived from different conditions and situations were compared. The overcrowding spaces are to increase the risk of delaying emergency evacuation time which is critical for user safety. It suggests the need for dispersing overcrowding spaces under evacuation situation. The suggested analysis model can evaluate overcrowding spaces in the outpatient department of hospital and provide locational data for distributing evacuation design resources.

노인요양병원에서 고령자의 수평 피난을 고려한 대피공간의 건축계획에 관한 연구 (A Study on the Architectural Planning of the Refuge Areas in Geriatric Hospitals Considering Horizontal Evacuation of the Elderly)

  • 김미정;권지훈
    • 의료ㆍ복지 건축 : 한국의료복지건축학회 논문집
    • /
    • 제29권3호
    • /
    • pp.7-15
    • /
    • 2023
  • Purpose: This study was conducted with the aim of presenting spatial planning directions for evacuation spaces based on an analysis of the performance of horizontal evacuation during the early stages of fire incidents in a geriatric hospital. Methods: Based on a review of previous studies, the research model was designed by establishing occupancy conditions, evacuation, and fire scenarios. The analysis model was developed by considering vulnerable areas in terms of evacuation movement and analyzing the results of evacuation performance. Furthermore, the study analyzed the improvement in evacuation performance by arranging refuge areas. Results: The results of the study are as follows. Firstly, vulnerability spots were identified in terms of evacuation performance by schematizing Required Safe Egress Time, Available Safe Egress Time, and their differences. Secondly, the Required Safe Egress Time in the adjacent public spaces along the escape routes of occupants was found to be higher compared to the Available Safe Egress Time. Thirdly, the results of the correlation analysis between the difference in Available Safe Egress Time and Required Safe Egress Time during the early stages of a fire, as well as their constituent factors, demonstrated that user congestion is a more significant factor in compromising evacuation safety than the physical changes in the fire condition. Fourthly, the analysis of evacuation time was conducted by designating refuge areas where occupants can evacuate within a sufficient timeframe. This led to a decrease in the Required Safe Egress Time. Implications: This study is expected to be used as data on the direction of evacuation space planning to improve the evacuation performance of Geriatric Hospital.

고층건축물의 피난기구 도입 필요성에 관한 연구 - 승강식피난기를 중심으로 - (A Study on the Necessity of Introducing Evacuation Instrument in High-rise Buildings - Focusing on Elevator Type Evacuation Instrument -)

  • 최규출;나판주;설영미
    • 한국화재소방학회논문지
    • /
    • 제28권3호
    • /
    • pp.10-19
    • /
    • 2014
  • 고층건물화재에서는 화재층에서 피난층까지 신속한 대피가 이루어져야만 인명피해를 최소화할 수 있다. 현행 국가화재안전기준(NSFC 301)이 정하는 적응성 있는 피난기구 중 고층건축물에 적용이 가능한 피난기구를 선정하여 현장 적응시험을 통한 11층 이상에서 적용 가능성을 분석하였다. 현장 시험결과 현재 11층 이상에서 제한하고 있는 피난기구의 문제점을 보완하여 신기술로 개발된 신개념 승강식피난기는 소방기관의 안정성 검사와 성능인증시험을 마친 제품으로 고층건축물 피난기구로 도입하여도 문제가 없다는 분석결과를 얻었다. 전력을 사용하지 않고 피난자의 체중(體重)을 이용하는 승강식피난기는 고층건축물 화재시 짧은 시간에 많은 인원의 피난이 가능한 피난기구임을 확인하였다. 특히 장애인이나 중증환자 등이 이용하는 건물에서 이용자 특성을 고려한 피난기구로는 무동력으로 작동되는 승강식피난기가 맞춤형 피난기구로 적응성이 있음을 확인하였다.

독성물질 누출 시 대피 속도 차이에 따른 고령자의 상대적 위험도 산정 (Estimation of the Relative Risk of the Elderly with Different Evacuation Velocity in a Toxic Gas Leakage Accident)

  • 이학태;곽종범;박제혁;류지성;이진선;정승호
    • 한국안전학회지
    • /
    • 제34권6호
    • /
    • pp.13-21
    • /
    • 2019
  • Leakage accidents in businesses dealing with hazardous chemicals can have a great impact on the workers inside the workplace, as well as residents outside the workplace. In fact, there were cases where hazardous chemicals leaked from many businesses. As a result, the Chemicals Control Act(CCA) was enacted in 2015, the Ministry of Environment introduced an Off-site Risk Assessment(ORA). The purpose of the ORA is to secure safety from the installation of the design of the workplace facilities so that chemical accidents of hazardous chemical handling facilities do not cause human or physical damage outside the workplace. In general, the ORA qualitatively determines where a protected facility is within the scope of the accident scenario. However, elderly who belong to the sensitive group is more sensitive than the general group under the same chemical accident effect, and the extent of the damage is serious. According to data from the Korea National Statistic Office, the number of elderly people is expected to increase steadily. Therefore, a quantitative risk analysis considering the elderly is necessary as a result of a chemical accident. In this study, accident scenarios for 14 locations were set up to perform emergency evacuation due to toxic gas leakage of Cl2(Chlorine) and HF(Hydrogen Fluoride), and the effects of exposure were analyzed based on the evacuation velocity difference of age 20s and 60s. The ALOHA(Areal Locations of Hazardous Atmospheres) program was used to calculate the concentration for assessing the effects. The time of exposure to toxic gas was calculated based on the time it took for the evacuation to run from the start point to the desired point and a methodology was devised that could be applied to the risk calculation. As a result of the study, the relative risk of the elderly, the sensitive group, needs to be determined.

국내 PBD기반 피난안전설계를 위한 피난용량 산정에 관한 연구(II) - 멀티플렉스 공간의 재실자밀도 조사 - (A Study on the Escape capacity for Evacuation safety Design of PBD foothold in Korea(II))

  • 조남훈;서동구;황은경;황금숙;권영진
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2008년도 추계학술논문발표회 논문집
    • /
    • pp.210-215
    • /
    • 2008
  • As the rapid and various changing of social aspects, the structures are getting bigger, higher and more complex. The importance of evacuation is on the rise as increased using frequency of multiplex area and it's high population density. According to the result of a survey with 2 domestic multiplex population density, the maximum was 0.43(人/$m^2$) and 0.51(人/$m^2$). considering evacuation dangerousness, the maximum value will be suitable for computation of evacuation capacity and this will be submitted as a basic data for computation of evacuation capacity.

  • PDF

평면상 승객의 회전 자세를 고려한 가속도 기반의 승객 탈출 분석 시뮬레이션 (Acceleration based Passenger Evacuation Simulation Considering Rotation of Passenger on Horizontal Plane)

  • 박광필;조윤옥;하솔;이규열
    • 한국CDE학회논문집
    • /
    • 제15권4호
    • /
    • pp.306-313
    • /
    • 2010
  • In this paper, an acceleration based passenger evacuation simulation is performed. In order to describe a passenger‘s behavior in an evacuation situation, a passenger is modeled as a rigid body which translates in the horizontal plane and rotates along the vertical axis. The position and rotation angle of a passenger are calculated by solving the dynamic equations of motions at each time step. The destination force, the contact force, and the group force are considered as external forces and the moments due to each force are also considered. With the passenger model proposed in this paper, the test problems in International Maritime Organization, Maritime Safety Committee/Circulation 1238(IMO MSC/Circ.1238) are implemented and the effects of passenger rotation on the evacuation time are confirmed.

인명탈출분석을 위한 인적거동실험 (Human Behavioral Experiment for Evacuation Analysis)

  • 이동곤;김홍태;박진형
    • 대한조선학회논문집
    • /
    • 제40권2호
    • /
    • pp.41-48
    • /
    • 2003
  • The human behavior is very important in development of simulation system for evacuation analysis. The walking speed of passenger is especially affected by dynamic effect and list due to damage and ship motion in wave. There are various methods to get an useful data for evacuation simulation. The onboard experimental approach is one of the most strong method. In this paper, the onboard experiment is performed to obtain human behavioral data. To realize ship trim and heel due to maritime casuality, the passage model for experiment is made. The experiment is carried out at dynamic and static condition respectively using the ship with passage model. The result is evaluated and it will be reflected in evacuation simulation tool.

선박화재의 인명안전평가 해석 (A Study on Evacuee′s Risk Assessment under Ship′s Fire)

  • 양영순;정정호;이재옥;공수철;여인철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.241-247
    • /
    • 2001
  • A Fire Safety Evaluation Module(FSEM), which quantitatively evaluates the risk of evacuees when fire occurs in buildings or ships, is presented in this paper. The developed FSEM can be applied to multi-room structure. Basic input data for the FSEM are prepared by fire model and evacuation model. CFAST which is one of the existing fire models is used as fire model and MonteDEM evacuation model was developed for evacuation model, respectively. MonteDEM evacuation model makes use of distinct element method and Monte-Carlo simulation, and it can also take into consideration ground inclination by ship motions in order to simulate the real situation of evacuation. Some typical situations are modelled for illustrative examples and quantitative assessment of evacuee's risk under fire accident is carried out.

  • PDF

Study on the Safe Evacuation Management in a Power Supply Disturbed Emergency

  • Suzuki, Nobuyuki;OHASHI, Tsubasa;WHORLOW, James R
    • 국제학술발표논문집
    • /
    • The 6th International Conference on Construction Engineering and Project Management
    • /
    • pp.87-91
    • /
    • 2015
  • For construction projects it is imperative that site management gives the highest priority to planning safe site evacuation for all foreseeable emergencies, including earthquakes and typhoons which are often experienced in Japan. This is especially important and even more critical for high risk projects involving underground works, such as Tunneling & Pneumatic Caissons. Based on the safety regulation of underground works, a back-up power supply system must be provided during the construction period at all times. Often, fluorescent lamps with re-chargeable batteries are provided for infrequent emergency cases, however these have a questionable useable life span and thus need careful maintenance and periodical replacement. In this paper we focused on using the phosphorescence materials to indicate the evacuation direction. As a result, it was confirmed that the phosphorescence materials were considered useful in reducing panic and facilitating a controlled evacuation in the event of a total black-out due to power failure.

  • PDF