• Title/Summary/Keyword: Evacuation Simulation Modelling

Search Result 6, Processing Time 0.021 seconds

Evacuation Route Simulation for Tsunami Preparedness Using Remote Sensing Satellite Data (Case Study: Padang City, West Sumatera Province, Indonesia)

  • Trisakti, Bambang;Carolita, Ita;Nur, Mawardi
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.47-50
    • /
    • 2006
  • Tsunami disaster caused great damages and very large victims especially when occurs in urban area along coastal region. Therefore information of evacuation in a map is very important for disaster preparedness in order to minimize the number of victims in affected area. Here, information generated from remote sensing satellite data (SPOT 5 and DEM) and secondary data (administration boundary and field survey data) are used to simulate evacuation route and to produce a map for Padang City. Vulnerability and evacuation areas are determined based on DEM. Landuse/landcover, accessibility areas, infrastructure and landmark are extracted from SPOT 5 data. All the data obtained from remote sensing and secondary data are integrated using geospatial modelling to determine evacuation routes. Finally the simulation of evacuation route in Padang City for tsunami preparedness is provided based on the parameters derived from remote sensing data such as distances from shelters, save zones, city's landmarks and the local community experiences how they can survive with the disaster.

  • PDF

A Study on the Comparative Analysis and Utilization of Evacuation Time according to Variation of Modelling of Behavior Modes: Focusing on the Case of Underground Parking Lot (행동모드 변화 모델링에 따른 피난시간 비교분석과 활용방안 연구: 지하 주차장 사례를 중심으로)

  • Gi-gyeong Koo
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.284-292
    • /
    • 2024
  • Purpose: Compared to general fires of the same size, underground parking lot fires are more likely to cause human and property damage and are not easy for firefighters to extinguish fire and save lives. This study attempted to find out how to secure the evacuation safety of parking lot users based on changes in the evacuation simulation behavior mode applied to evaluate the evacuation safety of the object. Method: Simulation for each CASE was performed using the Pathfinder program. Result: it was found that the higher the reference value, the higher the evacuation time, and Behavior showed an increase in time in SFPE mode rather than Steering mode. Priority was able to confirm an increase in time in priority designation rather than non-priority designation. Conclusion: The Required Safe Egress Time (RSET) for evaluating the evacuation safety of underground parking lots and the building evacuation design to ensure evacuation safety should be evaluated and reflected separately from Simulation's Behaviour Mode and Priority.

Development of the intelligent building control system simulator for the performance analysis (인텔리젼트 빌딩 제어 시스템의 성능해석을 위한 시뮬레이터 개발)

  • 배중원;임동진;송규동
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.624-627
    • /
    • 1996
  • To provide pleasant building environment and the ease of maintenance and facility management, many new office buildings are being built as intelligent buildings. Building control systems which are employed in intelligent buildings require advanced types of controllers and varieties of control schemes. Designing and installation of these types of advanced building control systems take a lot of effort and also they are costly. In order to design these systems, it is necessary for the designers to have means to analyze and estimate the performance of control systems. The simulator which is presented in this paper is composed of three parts, HVAC simulation module, elevator simulation module, and evacuation modeling module for the outbreak of fire or similar disasters. In this paper, the functions and modelling method for each module are explained and simulation results are presented.

  • PDF

A Occupant Load Density and Computer Modelling of Evacuation time in Office Buildings (사무소 건물의 거주밀도 분포와 피난시간 예측)

  • Kim, Un-Hyeong;Rui, Hu;Kim, Hong
    • Fire Science and Engineering
    • /
    • v.13 no.3
    • /
    • pp.35-42
    • /
    • 1999
  • A occupant load density of contemporary office buildings were surveyed by a building w walk through procedure in Korea. The survey results of ten office buildings are range from 1 2 2 2 213.14 m !person 041.4 ft !person) to 22.69 m /person (244.34 ft !person) with 95% confidence l level and the mean occupant load density is 17.92 m2/person 092.87 ft2/야rson). The impacts of occupant load on evacuation flow time was analyzed by applying time-based egress m model, SIMULEX with various occupant load densities from previous studies. I In order to demonstrate the validation of egress modeling method, fire evacuation exercise a and computer simulation were used to simulate the actual evacuation plan for a high-rise office building. An analysis and comparison of the results of these approaches was made to i illustrate the influence of model limitations on the result of prediction The result of the study shows that the introduction of occupant load concept in building c code of Korea is essential to achieving resonable building life safety design in future.

  • PDF

A Study on Improvement Way of Fire Simulation Modelling Field through Analysis of Performance-Based Design Reports of High-rise Residential Complex Building in B Metropolitan City (B도시지역 고층 주상복합건축물 성능위주설계도서 분석을 통한 화재 시뮬레이션 분야 개선방안에 관한 연구)

  • Seo, Min-Ji;Lee, Yang-Ju;An, Sung-Ho;Hwang, Cheol-Hong;Choi, Jun-Ho
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.80-85
    • /
    • 2017
  • Recently, in Korea, construction of high-rise buildings has been rapidly increasing. Therefore, in order to minimize the loss of life and property in the event of a fire, "performance-based design" which requires performance equal to or better than current regulations is obligatorily required. However, in the field of fire and evacuation simulation, which occupies a large part in the performance-based design, detailed technical guidelines have not yet been established. Therefore, various designers are proceeding with the computer simulation modelling by referring to the design report book previously performed. Especially, in the case of the fire simulation, according to the judgment of a designer the scenario type is selected and the input values is set. Even if the building is used for the same purpose, it is true that the result can be different depending on how and who designed it. Therefore, in this paper, we have investigated the fire scenarios type and scenarios input values by randomly examining 7 preliminary reports of performance-based design in B metropolitan city. We also propose the improvement strategy for fire simulation and lay the groundwork for establishment of technical guidelines for fire simulation for performance-based design.

Modeling flood and inundation in the lower ha thanh river system, Binh dinh province, vietnam

  • Don, N. Cao;Hang, N.T. Minh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.195-195
    • /
    • 2016
  • Kon - Ha Thanh River basin is the largest and the most important river basin in Binh Dinh, a province in the South Central Coast of Vietnam. In the lower rivers, frequent flooding and inundation caused by heavy rains, upstream flood and or uncontrolled flood released from upstream reservoirs, are very serious, causing damage to agriculture, socio-economic activity, human livelihood, property and lives. The damage is expected to increase in the future as a result of climate change. An advanced flood warning system could provide achievable non-structural measures for reducing such damages. In this study, we applied a modelling system which intergrates a 1-D river flow model and a 2-D surface flow model for simulating hydrodynamic flows in the river system and floodplain inundation. In the model, exchange of flows between the river and surface floodplain is calculated through established links, which determine the overflow from river nodes to surface grids or vice versa. These occur due to overtopping or failure of the levee when water height surpasses levee height. A GIS based comprehensive raster database of different spatial data layers was prepared and used in the model that incorporated detailed information about urban terrain features like embankments, roads, bridges, culverts, etc. in the simulation. The model calibration and validation were made using observed data in some gauging stations and flood extents in the floodplain. This research serves as an example how advanced modelling combined with GIS data can be used to support the development of efficient strategies for flood emergency and evacuation but also for designing flood mitigation measures.

  • PDF