• Title/Summary/Keyword: Eutrophication assessment

Search Result 118, Processing Time 0.029 seconds

Life Cycle Impact Assessment to Corn Field Appling Anaerobic and Aerobic Digestates Including Each Swine Waste Treatment System (돈분처리 시스템을 포함한 액비 시용에 따른 옥수수 재배과정에 대한 전과정 환경영향 평가)

  • Shin, Joung-Du;Lee, Sun-Il;Park, Woo-Kyun;Choi, Yong-Su;Na, Young-Eun;Park, Yoo-Sung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.22 no.2
    • /
    • pp.35-43
    • /
    • 2014
  • The application of the Life Cycle Impact Assessment (LCIA) methodology to analyze the environmental burden of appling the digestates to corn field including different swine waste treatment systems was investigated. The first part of LCA is an inventory of parameters used to emissions released due to the system under investigation. In the following step, the Life Cycle Impact Assessment, the inventory data were analyzed and aggregated in order to finally get one index representing the each environmental burden. Each corn field applied with the aerobic and anaerobic digestates including different swine waste treatment systems was used as an example for the life cycle impact analysis. With analyzing the agricultural environmental burden, it observed that the effect of corn field applied aerobic digestate including digestion system was 7.6 times higher at eutrophication effects, but global warming potential effect was 0.9 times less than its applied anaerobic digestate.

Environmental Impact Assessment of EPS Box for Fresh Food in Korea and Europe (한국과 유럽의 신선식품용 EPS박스에 대한 전과정 환경영향평가)

  • SY, Kim;CHAROENSRI, KORAKOT;YJ, Shin;HJ, Park
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.201-210
    • /
    • 2022
  • Expanded polystyrene (EPS) is the most commonly used fresh food refrigeration insulation in Korea and Europe. Moreover, as the use of disposable packaging materials has increased significantly along with non-face-to-face delivery services since the COVID-19 crisis, social issues related to waste disposal are also being raised. Therefore, in this study, the life cycle of EPS boxes for fresh food is focused on the factors that have a large difference between incineration and landfill including recycling in Europe and Korea in the disposal process after use, and raw materials and energy in the manufacturing process, which account for a large portion of the environmental impact value. We tried to compare the environmental impact of evaluation. Overall, the raw material production stage, box manufacturing stage, and packaging stage have similar processes in Europe and Korea, but unlike Europe, Korea, which lacks landfills and incineration facilities, has focused on expanding the recycling rate. It was necessary to do an environmental impact assessment. Data affecting the environment were derived based on 2019 and 2020 data for Korea and 2017 and 2020 data for Europe. In order to predict the future environmental impact assessment, assumptions about the disposal rate in 2025 and 2030 were introduced and evaluated. As a result of this study, it was found that the raw material production stage of EPS boxes, which have similar processes in both Korea and Europe, has the greatest effect on the global warming effect of Korean EPS boxes. However, Korea, which has a relatively high recycling rate in the disposal process compared to incineration and landfill, showed better environmental performance than Europe in most impact indicators except freshwater eutrophication. In particular, Korea has increased the overall recycling rate compared to Europe by replacing various recyclable materials such as building materials and sundries with XPS (extruded polystyrene) recycled materials. In conclusion, it was found that increasing the recycling rate rather than incinerating and landfilling EPS boxes for fresh food in the domestic EPS industry has relatively less environmental load compared to Europe.

Environmental Impacts Assessment of Elementary School Buildings and Establishment of the Reference Target using Life Cycle Assessment Model (전과정평가 모델을 이용한 초등학교 건축물 환경영향 평가 및 비교기준 수립)

  • Ji, Changyoon;Hong, Taehoon;Jeong, Jaewook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.3
    • /
    • pp.49-58
    • /
    • 2015
  • In order to determine how much a new green building reduce the environmental impacts, it is necessary to establish the reference target for comparison. Therefore, this study aims to establish the reference target by evaluating the environmental impacts of existing buildings. To ensure this end, this study evaluated the environmental impacts(Global warming potential, ozone layer depletion potential, acidification potential, eutrophication potential, photochemical ozone creation potential, and abiotic depletion potential) of 17 existing elementary school buildings, which are located in Seoul, Busan, Daegu, and Gwangju, by using the hybrid LCA model. As a result, the environmental impacts of the case buildings were clearly distinguished in different regions. Therefore, this study presented the reference targets which are appropriate to each region. For example, the reference targets for global warming potential, which can be used in Seoul, Busan, Daegu, and Gwangju, are 3.76E+03, 1.90E+03, 2.63E+03, $2.81E+03kg-CO_2\;eq./m^2$, respectively. The presented reference targets are expected to be useful for understanding how much environmental impacts can be reduced when a new green school building is constructed.

Effective Costal Environmental Management by Conjugation of Modeling of Bio-Purification and Total Allowable Pollutant Loads in Masan Bay (생물정화기작과 총허용오염부하량을 연계한 마산만의 효율적 해양환경 개선방안)

  • Eom, Ki-Hyuk;Kim, Gui-Young;Lee, Won-Chan;Lee, Dae-In
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.1
    • /
    • pp.38-46
    • /
    • 2012
  • This study carried out current status, characteristics, and problems of coastal environment management on semi-enclosed Masan Bay in Korea and suggests cost-effective and eco-friendly water quality management policy. The pollutants from terrestrial sources into the Bay have apparently environmental pollution problems, such as eutrophication, red tide, and hypoxia. The carrying capacity of the Bay is estimated by hydrodynamic model and ecosystem model, material circulation including bivalve in ecosystem is analyzed by the growth model of bivalve. The resulting reduction in the input load was found to be 50~90%, which is unrealistic. When the efficiency of water quality improvement through bivalve farming was assessed based on the autochthonous COD, 30.7% of the total COD was allochthonous COD and 69.3% was autochthonous COD. The overall autochthonous COD reduction rate by bivalve aquaculture farm was found to be about 6.7%. This study indicate that bivalve farming is about 31% less expensive than advanced treatment facilities that remove both nitrogen and phosphorous.

Life Cycle Assessment of Mobile Phone Charger Containing Recycled Plastics (재생 플라스틱을 적용한 휴대폰 충전기 전과정평가)

  • Heo, Young-chai;Bae, Dae-sik;Oh, Chi-young;Suh, Young-jin;Lee, Kun-mo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.12
    • /
    • pp.698-705
    • /
    • 2017
  • Environmental impact of a mobile phone charger containing recycled plastic was quantified using LCA and the environmental benefits from the use of recycled and virgin plastic were compared. The assessment considers potential environmental impacts across the whole life cycle of the charger including; pre-manufacturing; manufacturing; distribution; product use; and end-of-life stages and quantified six environmental impact categories; Abiotic depletion; Acidification; Eutrophication; Global warming; Ozone layer depletion; and Photochemical oxidants creation. The study showed that the environmental impacts of the use stage accounted for 94.4% and 70% in the resource depletion and global warming impact categories, respectively, and the environmental impacts of the pre - manufacturing stage accounted for more than 98% in the other impact categories. The main cause of the environmental impacts in the use stage was electricity consumed by the charger. The main cause in the pre-manufacturing stage was PBA (Printed Board Assembly) and external case manufacturing. In order to quantify the environmental benefits of recycled PC (Polycarbonate) in the exterior case, the environmental impacts of 1 kg production of recycled PC and virgin PC were evaluated. The environmental impact on the abiotic depletion of the recycled PC is estimated to be 30% compared to the virgin PC, and the impacts on the other impact categories of the recycled PC were less than 5% of the virgin plastic. Sensitivity analysis was performed for 12 items including site data and assumptions made. The sensitivity of each item was less than 10%. The results of this study confirm that designing compact and light PBA, improving charging efficiency, and use of recycled plastic are important design factors to reduce the environmental impact of a charger.

Life Cycle Assessment of the Domestic Dairy Cow System (국내 낙농우(젖소)로부터의 우유생산에 대한 전과정평가)

  • Park, Yoo Sung;Lee, Kun Mo;Yang, Seung Hak
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.1
    • /
    • pp.52-59
    • /
    • 2015
  • Recently the dairy cow industry have faced environmental issues such as eutrophication, global warming, etc. An LCA was used to quantify the environmental impact of a dairy cow system and to identify key issues contributing to the impact. The system boundary crop cultivation for feeding dairy cow, feed production, rearing and manure management (cradle-to-gate). The functional unit was 1 kg of milk (fat protein corrected milk, FPCM) produced. Rearing and cultivation of feed crops stages in system boundary to the environmental impact of the domestic dairy cow system were dominant issues. Techniques such as suppression of enteric fermentation, improvement of the energy efficiency of farm equipment and apparatuses, management of leachate generated during the crop cultivation, and development of controling the loss of fertilizer during crop production would be necessary for the improvement of the environmental key issues of the dairy cow system.

Comparison of Environmental Impacts of Green and Traditional Buildings using Life Cycle Assessment (전과정평가(LCA)를 이용한 친환경 인증 건축물과 일반 건축물의 환경영향 비교 사례 연구)

  • Hong, Taehoon;Jeong, Kwangbok;Ji, Changyoon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.3
    • /
    • pp.58-65
    • /
    • 2014
  • This study aims to understand the environmental impact reduction of green buildings that are certified by Green standard for energy and environmental design(G-SEED). To ensure this end, this study assessed and compared the environmental impacts(global warning, ozone layer depletion, acidification, and eutrophication) of a G-SEED-certified elementary school building(green building) and an uncertified elementary school building(traditional building) using the life cycle assessment methodology. This study considered the environmental impacts from the material manufacturing, material transportation, on-site construction, and operation during 40 years. The comparison of the environmental impact intensity of two buildings showed that the green building generated much more environmental impacts than the traditional building. For example, the global warming potential of the green building was approximately 12.5% higher than of the traditional building since the global warming potential of the green building was 3.751 $t-CO_2eq./m^2$ while that of the traditional building was 3.282 $t-CO_2eq./m^2$. It signifies that the G-SEED doesn't guarantee the reduction of the environmental impacts in terms of four impact categories. Therefore, the G-SEED should be complemented and improved to achieve the environmental impact reduction.

Life Cycle Assessment on Process of Wet Tissue Production (물티슈 제조공정의 전과정 평가)

  • Ahn, Joong Woo
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.269-274
    • /
    • 2018
  • In this study, Life Cycle Assessment (LCA) of wet tissue manufacturing process was performed. The wet tissue manufacturing process consists of preparation of wetting agent (chemical liquid), impregnation of nonwoven fabric into wetting agent and primary and secondary packaging. Data and information were collected on the input and output of the actual process from a certain company and the database of the Korea Ministry of Environment and some foreign countries (when Korean unavailable) were employed to connect the upper and the lower process flow. Based on the above and the potential environmental impacts of the wet tissue manufacturing process were calculated. As a result of the characterization, Ozone Layer Depletion (OD) is 3.46.E-06 kg $CFC_{11}$, Acidification (AD) is 5.11.E-01 kg $SO_2$, Abiotic Resource Depletion (ARD) is $3.52.E+00\;1yr^{-1}$, Global Warming (GW) is 1.04.E+02 kg $CO_2$, Eutrophication (EUT) is 2.31.E-02 kg ${PO_4}^{3-}$, Photochemical Oxide Creation (POC) was 2.22.E-02 kg $C_2H_4$, Human Toxicity (HT) was 1.55.E+00 kg 1,4 DCB and Terrestrial Ecotoxicity (ET) was 5.82.E-04 kg 1,4 DCB. In order to reduce the environmental impact of the manufacturing process, it is necessary to improve the overall process as other general cases and change the raw materials including packaging materials with less environmental impact. Conclusively, the energy consumed in the manufacturing process has emerged as a major issue, and this needs to be reconsidered other options such as alternative energy. Therefore, it is recommended that a process system should be redesigned to improve energy efficiency and to change to an energy source with lower environmental impact. Due to the nature of LCA, the final results of this study can be varied to some extent depending on the type of LCI DB employed and may not represent of all wet tissue manufacturing processes in the current industry.

Evaluation of Future Turbidity Water and Eutrophication in Chungju Lake by Climate Change Using CE-QUAL-W2 (CE-QUAL-W2를 이용한 충주호의 기후변화에 따른 탁수 및 부영양화 영향평가)

  • Ahn, So Ra;Ha, Rim;Yoon, Sung Wan;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.2
    • /
    • pp.145-159
    • /
    • 2014
  • This study is to evaluate the future climate change impact on turbidity water and eutrophication for Chungju Lake by using CE-QUAL-W2 reservoir water quality model coupled with SWAT watershed model. The SWAT was calibrated and validated using 11 years (2000~2010) daily streamflow data at three locations and monthly stream water quality data at two locations. The CE-QUAL-W2 was calibrated and validated for 2 years (2008 and 2010) water temperature, suspended solid, total nitrogen, total phosphorus, and Chl-a. For the future assessment, the SWAT results were used as boundary conditions for CE-QUAL-W2 model run. To evaluate the future water quality variation in reservoir, the climate data predicted by MM5 RCM(Regional Climate Model) of Special Report on Emissions Scenarios (SRES) A1B for three periods (2013~2040, 2041~2070 and 2071~2100) were downscaled by Artificial Neural Networks method to consider Typhoon effect. The RCM temperature and precipitation outputs and historical records were used to generate pollutants loading from the watershed. By the future temperature increase, the lake water temperature showed $0.5^{\circ}C$ increase in shallow depth while $-0.9^{\circ}C$ in deep depth. The future annual maximum sediment concentration into the lake from the watershed showed 17% increase in wet years. The future lake residence time above 10 mg/L suspended solids (SS) showed increases of 6 and 17 days in wet and dry years respectively comparing with normal year. The SS occupying rate of the lake also showed increases of 24% and 26% in both wet and dry year respectively. In summary, the future lake turbidity showed longer lasting with high concentration comparing with present behavior. Under the future lake environment by the watershed and within lake, the future maximum Chl-a concentration showed increases of 19 % in wet year and 3% in dry year respectively.

Assessment of polluted factors in aquatic environment using near infrared spectroscopy

  • Norio, Sugiura;Zhang, Yansheng;Wei, Bin;Zhang, Zhenya;Isoda, Hiroko;Maekawa, Takaaki
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1272-1272
    • /
    • 2001
  • Eutrophication processes of aquatic environment are strictly correlated with the concentration levels of nitrogen, phosphorous, organic matter and biological parameters such as phytoplankton and chlorophylla (Tremel, 1996; Burns et al., 1997; Young et al. 1999; Wei et al.,2000). Accordingly, the monitoring and evaluation of these factors will provide useful information about the health of aquatic ecosystem. However, the traditional types of auqatic chemistry analysis and ecological monitoring of phytoplankton are time-consuming, costly, and further resulting in secondary pollution due to the use of reagents. NIR (near-infrared) spectroscopy, as a rapid, non-destructive, little sample preparation and reagents-free technology (Hildrum et al., 1992), has been extensively applied to the characterization of food (Osborne and Fearn, 1988), pharmaceutical (Morisseau and Rhodes, 1995) and textile materials (Clove et al.,2000). Currently, NIR technology has been used indirectly in inferring lake water chemistry by two approaches, suspended (Malley et al., 1996) or seston (Dabakk et al., 1999), and sediments (Korsman et al., 1992; Malley et al., 1999). In addition, the evaluation of trophic state and the identification of the key factors contributed to the trophication are the key step to restore the damaged aquatic environment. Moreover, an understanding of the factors, which regulate the algal proliferation, is crucial to the successful management of aquatic ecosystem. In the paper, NIR technology will be used to study the environmental factors affecting the algal proliferation in combination with the trophic state index and diversity index. This novel developed system can be applied in monitoring and evaluating allopathic water environment and provide real time information services for the aquatic environment management.

  • PDF