• Title/Summary/Keyword: Eutrophication Index

Search Result 100, Processing Time 0.023 seconds

The Assessment of Coastal Water Quality Grade Using GIS (GIS를 이용한 연안 수질등급 평가)

  • Jeong, Jong-Chul;Cho, Hong-Lae
    • Journal of Environmental Impact Assessment
    • /
    • v.15 no.1
    • /
    • pp.45-52
    • /
    • 2006
  • The purpose of this study is to assess spatiotemporal variation of coastal water quality according to time and location changes. For this we developed numerical marine trophic index base on four water quality components (chlorophyll, suspended solids, dissolved inorganic nitrogen and phosphorus) and applied this index to the water quality data measured in the korean coastal zone for the 7-years period from 1997 to 2003. Water quality data are obtained only at selected sites even though they are potentially available at any location. Therefore, in order to estimate spatial variation of coastal water quality, it is necessary to estimate the unknown values at unsampled locations based on observation data. In this study, we used IDW (Inverse Distance Weighted) method to predict water quality components at unmeasured locations and applied marine trophic index to predicted values obtained by IDW interpolation. The results of this study indicate that marine trophic index and spatial interpolation are useful for understanding spatiotemporal characteristics of coastal water quality.

Eutrophication of Nakdong River and Statistical Analtsis of Envitonmental Factors (낙동강 부영양화와 수질환경요인의 통계적 분석)

  • Kim, Mi-Suk;Chung, Young-Ryun;Suh, Euy-Hoon;Song, Won-Sup
    • ALGAE
    • /
    • v.17 no.2
    • /
    • pp.105-115
    • /
    • 2002
  • Influences of vrious environmental factors on the eutrophication of Nakdong River were analyzed statistically using water samples collected from 1 January, 1999, to 30 September, 2001 at Namji area. The relationships between the concentration of chlorophyll α (eutrophication index) and environmental factors and were analyzed to develop a statistical model which can predict the status of eutrophication. The concentation of chlorophyll α ranged from 66.2 mg · $m^{-3}$ to 70.8 mg · $m^{-3}$ during dry winter season and the average concentration during this study period was 35.5 mg · $m^{-3}$ Namji area of Nakdong River was in the hypereutrohic stage in terms of water quality. Stephanodiscus sp. and Aulacoseria granulata var. angustissima were dominant species during the witnter to spring time and summer to autumn period, respectively. Based on the correlation analysis and the analysis of variance between chlorophyll α concentration and environmental factors, significantly high positive relationships were found in the order of BOD> pH> COD > KMnO₄ consumption > DO > conductivity > alkalinity. In contrast to these factors, significantly negrative relationships were found as in the order of $PO₄^{3-}-P$ >water level>the rate of Namgang-dam discharge > NH₃-N> the rate of Andong-dam discharge> the rate of Hapchoen-dam discharge. Based on the factors analysis of environmental factors on the concentration of chlorophyll α, we obtained five factors as follows. The first factor included water level, pH, turbiditiy, conductivity, alkalinity and the rate of Namgang-dam discharge. The second factor included water temperature DO, NH₄+-N, NO₃- -N. The third factor included KMnO₄ consumption COD and BOD. The fourth factor included the rate of Andong-dam discharge, the rate of Hapcheon-dam discharge, and the rate of Imha-dam discharge. The final factor included T-N T-P and $PO₄^{3-}-P$ > concentration. We derived two statistica models that can predict the occurrence of eutrophication based on the factors by factor analysis, using regression analysis. The first model is the stepwise regression model whose independent variables are the factors produced by factor analysis : chl α (mg · $m^{-3}$ = 42.923+(18.637 factor 3) + (-17.147 factor 1) + (-12.095 factor 5) + (-4.828 factor 4). The second model is the alternative stepwise regression model whose independent variables are the sums of the standardized main component variables:chl α (mg · $m^{-3}$ = 37.295+(7.326 Zfactor 3) + (-2.704 Zfactor 1)+(-2.341 Zfactor 5).

Analysis of the Trophic Characteristics of the SoOak River Watershed Using the Korean Trophic State Index (한국형 부영양화지수를 이용한 소옥천 유역의 부영양 특성 분석)

  • Park, Jaebeom;Kal, Byungseok;Lee, Chulgu;Hong, Seonhaw;Choi, Moojin;Seo, Heeseung
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.330-337
    • /
    • 2018
  • The Korean Eutrophication Index($TSI_{ko}$) was estimated using water quality monitoring data of eight main sites in the SoOoak River watershed. The environmental characteristics of rivers were classified and evaluated using the $TSI_{ko}$ for each factor calculated by COD, T-P, and Chl-a. There is a good condition for the algae to grow due to shallow water depth, inflow of non-point source pollution during rainfall, influx of sewage treatment effluent and increase of residence time. It shows trophic state more than mesotrophication year round. Especially, in case of Chuso point, which is the inflow point of Daecheong Lake, the water quality deteriorated due to hydraulic characteristics and showed the eutrophic state. Therefore, it is necessary to establish the measures to improve the water quality through the precise monitoring of SoOak River.

Water Quality Assessment for Reservoirs using the Korean Trophic State Index (한국형 부영양화 지수를 이용한 저수지 수질평가)

  • Kim, Eungseok;Sim, Kuybum;Kim, Sangdan;Choi, Hyun Il
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.78-83
    • /
    • 2012
  • Man-made reservoirs over 95% in Korea are shallower than 10 meters in depth, which is apt to cause eutrophication. This study has characterized long-term trends in water quality factors for the selected six reservoir points in the Kum River watersheds, and then estimated the seasonal trophic state index for each reservoir. The reservoir trophic state was evaluated at four trophic levels using the Korean trophic state index, TSIKO. It is observed from seasonal results for six reservoirs that the highest value of the trophic state index is estimated in summer while the trophic state index value is low in spring and winter seasons. Especially, the Boryeong Lake has a relatively lower trophic state index since this reservoir has been managed properly for water withdrawal and irrigation. It is expected that the seasonal trophic state index resulted from this study can contribute toward long-term water quality improvement plans for reservoirs.

Environmental Characteristics of the Diatom in the Trench Sediments Around Bangudae Petroglyphs, Ulsan (울산 반구대 암각화 인근 트렌치 퇴적물 내 규조의 환경 특성)

  • Bak, Young-Suk;Ryu, Choon Kil;Cho, Mi-Soon
    • Journal of the Korean earth science society
    • /
    • v.37 no.1
    • /
    • pp.11-20
    • /
    • 2016
  • Diatoms were studied from the trench sediments around Bangudae petroglyphs in order to better understand the depositional environment before and after the construction of Sayeon dam in Ulsan. There were no diatoms produced from the sediments before the dam construction while the diatoms were produced from the sediments (depth of trench 228 cm) after the construction of the dam. Seventy-five species of diatoms of 27 genera were identified in the trench sediments. The number of diatom valves per gram of dry sediment ranged from $0.2-5.8{\times}10^5g^{-1}$. Four diatom assemblage zones were identified according to the frequency of critical taxa as follows: assemblage zone I, from 228 to 150 cm; assemblage zone II, from 150 to 122 cm; assemblage zone III, from 122 to 62 cm; and assemblage zone IV, from 62 to 0 cm. In addition, based on the environmental indicator species, an analysis was carried out to measure eutrophication, acidity and $Cl^-$ value. Results of the eutrophication and $Cl^-$ values were as follows. Based on the lower 74 cm horizons, the degree of eutrophication middle-high to $Cl^-$ values were lower, upper horizons appeared to eutrophication in the low, and $Cl^-$ values were high. Acidification from low horizons of 122 cm showed a neutral-alkaline degree whereas it exhibited acid in the upper part. In particular, regarding nutrients (TP and TN), the index taxa showed a higher TP value at 175 cm while higher TN value at 62 cm.

Evaluation of Trophic State of a Small-scale Pond (Wonheung) in Ecological Park (소규모 생태연못(원흥이 방죽)의 부영양화 평가)

  • Lee, Heung Soo;Chung, Se Woong;Choi, Jung Kyu;Shin, Sang Il
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.741-749
    • /
    • 2008
  • Many small-scale ponds that serve as ecological habitat, recreation and irrigation are faced to eutrophication problem, which causes aesthetic nuisance and ultimately loss of their functions. Thus accurate evaluation of the trophic state of these ponds is essential to provide rational information to the stakeholders so that they can develop effective management actions. In this study, the trophic state of a small pond (Wonheung) that experiencing water quality degradation due to vicinity land development was assessed using various Trophic State Indexes (TSIs) and statistical analysis including Principal Components Analysis (PCA) based on the field monitoring data obtained from May to December, 2007. The results showed that the pond is under eutrophic state with average total nitrogen (T-N) and total phosphorus (T-P) concentrations of $708.1{\mu}g/L$ and $59.3{\mu}g/L$, respectively. The factor loading plot obtained from PCA showed distinct two influencing factors, PC 1 and PC 2. PC 1 was grouped by T-P, Chlorophyll a (Chl-a), suspended solids (SS), TN/TP ratio, and transparency that all strongly related to the eutrophication state, while PC 2 by temperature, conductivity, dissolved oxygen (DO) and turbidity that explains the seasonal water quality variations. The limiting factor was identified as light rather than phosphorus by both T-N/T-P ratio and TSI indexes analysis. The results and methodology adopted in this study can be used for water quality assessment for other small ponds and lakes.

Evaluation of monthly environmental loads from municipal wastewater treatment plants operation using life cycle assessment

  • Piao, Wenhua;Kim, Ye-jin
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.284-290
    • /
    • 2016
  • Life cycle assessment (LCA) methodology can be used to assess impacts on the environment that might be generated during treatment of wastewater and sludge treatment. In this work, LCA methodology was suggested to evaluate monthly environmental impact of wastewater treatment plants (WWTPs). Two field scale WWTPs, A2/O process and conventional activated sludge process (CAS), were selected as target plants and the operational data were collected from those plants. As the function units, the unit volume of treated wastewater of $1m^3$ and 1 kg T-N eq. removed were selected. The environmental effect of target WWTPs operation were assessed as impact categories such as global warming potential, eutrophication potential, and so on. From monthly profiles of each index, it was shown that the environmental impact of WWTPs has seasonal patterns influenced by the influent flow rate variation causing higher impacts in winter than summer. This is due to the fact that there were no significant increase in the electricity consumption and chemical usage during the summer while the treated volume of wastewater was increased.

Spatio-temporal variabilities of nutrients and chlorophyll, and the trophic state index deviations on the relation of nutrients-chlorophyll-light availability

  • Calderon, Martha S.;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • v.39 no.1
    • /
    • pp.31-42
    • /
    • 2016
  • The object of this study was to determine long-term temporal and spatial patterns of nutrients (nitrogen and phosphorus), suspended solids, and chlorophyll (Chl) in Chungju Reservoir, based on the dataset of 1992 - 2013, and then to develop the empirical models of nutrient-Chl for predicting the eutrophication of the reservoir. Concentrations of total nitrogen (TN) and total phosphorus (TP) were largely affected by an intensity of Asian monsoon and the longitudinal structure of riverine (Rz), transition (Tz), and lacustrine zone (Lz). This system was nitrogen-rich system and phosphorus contents in the water were relatively low, implying a P-limiting system. Regression analysis for empirical model, however, showed that Chl had a weak linear relation with TP or TN, and this was mainly associated with turbid, and nutrient-rich inflows in the system. The weak relation was associated with non-algal light attenuation coefficients (Kna), which is inversely related water residence time. Thus, values of Chl had negative functional relation (R2 = 0.25, p < 0.001) with nonalgal light attenuation. Thus, the low chlorophyll at a given TP indicated a light-limiting for phytoplankton growth and total suspended solids (TSS) was highly correlated (R2 = 0.94, p < 0.001) with non-algal light attenuation. The relations of Trophic State Index (TSI) indicated that phosphorus limitation was weak [TSI (Chl) - TSI (TP) < 0; TSI (SD) - TSI (Chl) > 0] and the effects of zooplankton grazing were also minor [TSI (Chl) - TSI (TP) > 0; TSI (SD) - TSI (Chl) > 0].

Long-term Changes of Physicochemical Water Quality in Lake Youngrang, Korea

  • Bhattrai, Bal Dev;Kwak, Sungjin;Choi, Kwansoon;Heo, Woomyung
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.1
    • /
    • pp.169-185
    • /
    • 2017
  • Physicochemical properties of water quality were analyzed to understand the long-term variations in Lake Youngrang from 1998 to 2015. Nonparametric statistical methods were applied to deduct correlation among water quality parameters and water quality trend. In total observations(N=64), the Secchi depth (SD) transparency showed significant positive correlation with salinity (r=0.458) and highly significant negative correlation with chlorophyll-a (r= -0.649) for p<0.0001 in two-tailed test of Spearman's rank correlation. Significant negative correlations of SD were observed with chemical oxygen demand (COD), total phosphorus (TP) and total nitrogen (TN). These correlation patterns were very similar in rainy (N=25) and non-rainy (N=39) periods too. Chlorophyll-a (Chl-a) had significant correlation with COD. Sen's slope test was performed along with Mann-Kendall trend test (significance ${\alpha}=0.05$, two-tailed) to find water quality trend. Positive trends were observed for SD and salinity with Sen's slopes 0.012 and 0.385, respectively (p<0.0001). Negative significant trends were observed for total nitrogen (TN) and Chl-a with Sen's slopes -0.02 (p<0.0001) and -0.346 (p=0.0010), respectively. Temperature, COD and phosphorus components had no trends. Carlson's trophic state index (TSI) for SD, TP and Chl-a were obtained in the ranges of 46~80, 37~82 and 39~82, respectively. Trophic index values suggest that Lake Youngrang was mesoeutrophic to eutrophic and there could be possibility of anoxia during the summer and dominance of blue-green algae. Excess nutrient inputs from external and internal sources were the causes of eutrophication in this lake. The findings of this study would be helpful to recognize water quality variables to manage the water body.

Ecological Studies on the Asan Reservoir. 1. Physicochemical chracteristics and Trophic Status (아산호의 생태학적 연구 1.이화학적 특성과 영양상태)

  • Jun, Sang-Ho;Shin, Yoon-Keun
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.3 s.99
    • /
    • pp.181-186
    • /
    • 2002
  • To evaluate the eutrophication status of the Asan Reservoir in Korea, physicochemical parameters were analyzed for samples of 19 sampling stations collected in the period from March to November in 1997. Water temperature was in the range of $8.3{\sim}35.3{\circ}^C$, with thermocline appearing in summer. Dissolved oxygen also showed similar verticle variation to temperature. Secchi depth was very shallow with a range of 0.1~1m. Suspended solids ranged from 11.3 mg/1 to 2143.3 mg/1, and seemed to be affected by the amount of rainfall and the standing stocks of phytoplankton. Nutrient concentrations were higher in tributaries, and decreased with downflow. Nutrients were low in the summer and early autumn when algal blooms occur, and high in the early spring and winter. The Trophic State Index showed that the Asan Reservoir is in a hypertrophic condition.