• Title/Summary/Keyword: Eurocode

Search Result 356, Processing Time 0.025 seconds

Static and fatigue performance of stud shear connector in steel fiber reinforced concrete

  • Xu, Chen;Su, Qingtian;Masuya, Hiroshi
    • Steel and Composite Structures
    • /
    • v.24 no.4
    • /
    • pp.467-479
    • /
    • 2017
  • The stud is one of the most frequently used shear connectors which are important to the steel-concrete composite action. The static and fatigue behavior of stud in the steel fiber reinforced concrete (SFRC) were particularly concerned in this study through the push-out tests and analysis. It was for the purpose of investigating and explaining a tendency proposed by the current existing researches that the SFRC may ameliorate the shear connector's mechanical performance, and thus contributing to the corresponding design practice. There were 20 test specimens in the tests and 8 models in the analysis. According to the test and analysis results, the SFRC had an obvious effect of restraining the concrete damage and improving the stud static performance when the compressive strength of the host concrete was relatively low. As to the fatigue aspect, the steel fibers in concrete also tended to improve the stud fatigue life, and the favorable tensile performance of SFRC may be the main reason. But such effect was found to vary with the fatigue load range. Moreover, the static and fatigue test results were compared with several design codes. Particularly, the fatigue life estimation of Eurocode 4 appeared to be less conservative than that of AASHTO, and to have higher safety redundancy than that of JSCE hybrid structure guideline.

Residual strength capacity of fire-exposed circular concrete-filled steel tube stub columns

  • Alhatmey, Ihssan A.;Ekmekyapar, Talha;Alrebeh, Salih K.
    • Advances in concrete construction
    • /
    • v.6 no.5
    • /
    • pp.485-507
    • /
    • 2018
  • Concrete-Filled Steel Tube (CFST) columns are an increasingly popular means to support great compressive loads in buildings. The residual strength capacity of CFST stub columns may be utilized to assess the potential damage caused by fire and calculate the structural fire protection for least post-fire repair. Ten specimens under room conditions and 10 specimens under fire exposure to the Eurocode smouldering slow-growth fire were tested to examine the effects of diameter to thickness D/t ratio and reinforcing bars on residual strength capacity, ductility and stiffness of CFST stub columns. On the other hand, in sixteen among the twenty specimens, three or six reinforcing bars were welded inside the steel tube. The longitudinal strains in the steel tube and load-displacement relationships were recorded throughout the subsequent compressive tests. Corresponding values of residual strength capacity calculated using AISC 360-10 and EC4 standards are presented for comparison purposes with the experimental results of this study. The test results showed that after exposure to $750^{\circ}C$, the residual strength capacity increased for all specimens, while the ductility and stiffness were slightly decreased. The comparison results showed that the predicted residual strength using EC4 were close to those obtained experimentally in this research.

Review of Resilience-Based Design

  • Ademovic, Naida;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.91-110
    • /
    • 2020
  • The reliability of structures is affected by various impacts that generally have a negative effect, from extreme weather conditions, due to climate change to natural or man-made hazards. In recent years, extreme loading has had an enormous impact on the resilience of structures as one of the most important characteristics of the sound design of structures, besides the structural integrity and robustness. Resilience can be defined as the ability of the structure to absorb or avoid damage without suffering complete failure, and it can be chosen as the main objective of design, maintenance and restoration for structures and infrastructure. The latter needs further clarification (which is done in this paper), to achieve the clarity of goals compared to robustness which is defined in Eurocode EN 1991-1-7 as: "the ability of a structure to withstand events like fire, explosions, impact or the consequences of human error, without being damaged to an extent disproportionate to the original cause". Many existing structures are more vulnerable to the natural or man-made hazards due to their material deterioration, and a further decrease of its loadbearing capacity, modifying the structural performance and functionality and, subsequently, the system resilience. Due to currently frequent extreme events, the design philosophy is shifting from Performance-Based Design to Resilience-Based Design and from unit to system (community) resilience. The paper provides an overview of such design evolution with indicative needs for Resilience-Based Design giving few conducted examples.

Seismic design of beam-column joints in RC moment resisting frames - Review of codes

  • Uma, S.R.;Jain, Sudhir K.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.5
    • /
    • pp.579-597
    • /
    • 2006
  • The behaviour of reinforced concrete moment resisting frame structures in recent earthquakes all over the world has highlighted the consequences of poor performance of beam column joints. Large amount of research carried out to understand the complex mechanisms and safe behaviour of beam column joints has gone into code recommendations. This paper presents critical review of recommendations of well established codes regarding design and detailing aspects of beam column joints. The codes of practice considered are ACI 318M-02, NZS 3101: Part 1:1995 and the Eurocode 8 of EN 1998-1:2003. All three codes aim to satisfy the bond and shear requirements within the joint. It is observed that ACI 318M-02 requires smaller column depth as compared to the other two codes based on the anchorage conditions. NZS 3101:1995 and EN 1998-1:2003 consider the shear stress level to obtain the required stirrup reinforcement whereas ACI 318M-02 provides stirrup reinforcement to retain the axial load capacity of column by confinement. Significant factors influencing the design of beam-column joints are identified and the effect of their variations on design parameters is compared. The variation in the requirements of shear reinforcement is substantial among the three codes.

Effect of local small diameter stud connectors on behavior of partially encased composite beams

  • Nguyen, Giang Bergerova;Machacek, Josef
    • Steel and Composite Structures
    • /
    • v.20 no.2
    • /
    • pp.251-266
    • /
    • 2016
  • The paper combines two distinct parts. First the behavior of welded headed studs with small diameters of 10 and 13 mm acting as shear connectors (which are not embraced in current standards) is studied. Based on standard push tests the load-slip relationships and strengths are evaluated. While the current standard (Eurocode 4 and AISC) formulas used for such studs give reasonable but too conservative strengths, less conservative and full load-slip rigidities are evaluated and recommended for a subsequent investigation or design. In the second part of the paper the partially encased beams under bending are analyzed. Following former experiments showing rather indistinct role of studs used for shear connection in such beams their role is studied. Numerical model employing ANSYS software is presented and validated using former experimental data. Subsequent parametric studies investigate the longitudinal shear between steel and concrete parts of the beams with respect to friction at the steel and concrete interface and contribution of studs with small diameters required predominantly for assembly stages (concreting). Substantial influence of the friction and effect of concrete confinement was observed with rather less noticeable contribution of the studs. Distribution of the longitudinal shear and its sharing between friction and studs is presented with concluding remarks.

Compressive Strength Evaluation of Longitudinally Stiffened Octangular-Section Modular Shell Towers (종방향으로 보강된 팔각단면 쉘기둥의 축방향 압축강도 평가)

  • Choi, Byung Ho;Kim, Jung Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.1
    • /
    • pp.135-140
    • /
    • 2016
  • This paper examined the uniaxial compressive strength of longitudinally-stiffened octangular modular section towers. Through a series of comparative studies, the 3-dimensional finite element analysis results were considerably larger than the nominal strength values based on Eurocode. Therefore, the design strength equations are simply applicable to the design of the octangular-section tower module, but a more rational method will be needed to properly predict the capacity.

Reliability studies on RC beams exposed to fire based on IS456:2000 design methods

  • Balaji, Aneesha;Aathira, M.S.;Pillai, T.M. Madhavan;Nagarajan, Praveen
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.853-866
    • /
    • 2016
  • This paper examines a methodology for computing the probability of structural failure of reinforced concrete beams subjected to fire. The significant load variables considered are dead load, sustained live load and fire temperature. Resistance is expressed in terms of moment capacity with random variables taken as yield strength of steel, concrete class (or grade of concrete), beam width and depth. The flexural capacity is determined based on the design equations recommended in Indian standard IS456:2000. Simplified method named $500^{\circ}C$ isotherm method detailed in Eurocode 2 is incorporated for fire design. A transient thermal analysis is conducted using finite element software ANSYS$^{(R)}$ Release15. Reliability is evaluated from the initial state to 4h of fire exposure based on the first order reliability method (FORM). A procedure is coded in MATLAB for finding the reliability index. This procedure is validated with available literature. The effect of various parameters like effective cover, yield strength of steel, grade of concrete, distribution of reinforcement bars and aggregate type on reliability indices are studied. Parameters like effective cover of concrete, yield strength of steel has a significant effect on reliability of beams. Different failure modes like limit state of flexure and limit state of shear are checked.

Investigation into shear properties of medium strength reinforced concrete beams

  • Shah, Attaullah;Ahmad, Saeed;Khan, Salimullah
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.265-282
    • /
    • 2010
  • The shear contribution of transverse steel in reinforced concrete beams is generally assumed as independent of the concrete strength by most of the building codes. The shear strength of RC beams with web reinforcement is worked out by adding the individual contributions of concrete and stirrups. In this research 70 beams of medium strength concrete in the range of 52-54 MPa, compressive strength were tested in two sets of 35 beams each. In one set of 35 beams no web reinforcement was used, whereas in second set of 35 beams web reinforcement was used to check the contribution of stirrups. The values have also been compared with the provisions of ACI, Eurocode and Japanese Code building codes. The results of two sets of beams, when compared mutually and provisions of the building codes, showed that the shear strength of beams has been increased with the addition of stirrups for all the beams, but the increase is non uniform and irregular. The comparison of observed values with the provisions of selected codes has shown that EC-02 is relatively less conservative for low values of longitudinal steel, whereas ACI-318 overestimates the shear strength of RC beams at higher values of longitudinal steel. The Japanese code of JSCE has given relatively good results for the beams studied.

Seismic evaluation and upgrading of RC buildings with weak open ground stories

  • Antonopoulos, T.A.;Anagnostopoulos, S.A.
    • Earthquakes and Structures
    • /
    • v.3 no.3_4
    • /
    • pp.611-628
    • /
    • 2012
  • The inelastic earthquake response of existing, reinforced concrete buildings with an open ground story, designed according to the old Greek codes, is investigated before and after their seismic strengthening with steel braces restricted to the open ground stories. The seismic performance evaluation is based on Part 3 of Eurocode 8 for assessment and retrofitting of buildings. Three and five-story, symmetric and non-symmetric buildings are subjected to a set of seven pairs of synthetic accelerograms, compatible with the design spectrum, and conclusions are drawn regarding the effectiveness of the strengthening solutions. Seismic behavior of the selected models confirms results of previous work regarding the insufficient capacity of the open ground stories for design level earthquakes. It is also shown that strengthening only the weak ground story, a choice having the substantial advantage of low cost and continued usage of the building during its seismic retrofitting, can remove the inherent weakness without shifting the problem to the stories above and thus making such buildings at least as strong as those without a weak first story. This partial strengthening is possible for symmetric as well as eccentric buildings, in which torsion plays a further detrimental role.

Sensitivity Analysis by Parametric Study of Load Factor for a Concrete Box Girder Railway Bridge Using Limit State Design

  • Yeo, Inho;Sim, Hyung-Bo;Kim, Daehwan;Kim, Yonghan
    • International Journal of Railway
    • /
    • v.8 no.1
    • /
    • pp.5-9
    • /
    • 2015
  • Reliability based limit state design method is replacing traditional deterministic designs such as allowable stress design and/or ultimate strength design methods in world trends. European design code(Eurocode) has adopted limit state design, and Korea road bridge design standard has also recently been transferred to limit state design method. In this trend, Korea railroad design standard is also preparing for adopting the same design concept. While safety factors are determined empirically in traditional design, load combinations as well as load factors are determined by solving limit state equations. General partial safety factors are evaluated by using AFORM(Advanced First Order Reliability Method) in the reliability based limit state design method. In this study sensitivity analysis is carried out for a dead load factor and a live load factor. Relative precisions of the dead load and the live load factors are discussed prior to the AFORM analysis. Furthermore the sectional forces of design and the material quantities required by two different design methods are compared for a PSC box girder railway bridge.