• Title/Summary/Keyword: Eumelanin

Search Result 22, Processing Time 0.018 seconds

Genetic Variations of Chicken MC1R Gene and Associations with Feather Color of Korean Native Chicken (KNC) 'Woorimatdag' (토종 '우리맛닭' 부계 및 실용계에서 MC1R 유전자 변이 및 모색과의 연관성 분석)

  • Park, Mi Na;Kim, Tae-Hun;Lee, Hyun-Jeong;Choi, Jin Ae;Heo, Kang-Nyeong;Kim, Chong-Dae;Choo, Hyo-Jun;Han, Jae-Yong;Lee, Taeheon;Lee, Jun-Heon;Lee, Kyung-Tai
    • Korean Journal of Poultry Science
    • /
    • v.40 no.2
    • /
    • pp.139-145
    • /
    • 2013
  • There are several loci controlling the feather color of birds, of which one of the most studied is Extended black (E) encoding the melanocortin 1-receptor (MC1R). Mutations in this gene affect the relative distribution of eumelanin, phaeomelanin. The association of feather color and sequence polymorphism in the melanocortin 1-receptor (MC1R) gene was investigated using Korean native chicken H breed (H_PL) and 'Woorimatdag' commercial chickens (Woorimatdag_CC). In order to correlate gene mutation to Korean native chicken feather color, single nucleotide polymorphism (SNP) from MC1R gene sequence were investigated. A total of 307 birds from H_PL and Woorimatdag_CC were used. H_PL have black, black-brown feather color and Woorimatdag_CC have black with brown spots or brown with black spots. There are 6 SNPs in MC1R gene, locus T69C, C212T, A274G, G376A, G636A, T637C. 3 SNPs are nonsynonymous that change amino acid. But it is difficult to find correlation of feather color and polymorphisms. It will be needed to increase the population of Korean native chicken H breed and correlation analysis of genetic variation with feather colors.

Melanogenesis regulatory constituents from Premna serratifolia wood collected in Myanmar

  • WOO, SO-YEUN
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.04a
    • /
    • pp.21-22
    • /
    • 2019
  • Melanin is a mixture of pigmented biopolymers synthesized by epidermal melanocytes that determine the skin, eye, and hair colors. Melanocytes produce two different kinds of melanin, eumelanin (dark brown/black insoluble pigments found in dark skin and dark hair and pheomelanin (lighter red/yellow). The biological role of melanin is to prevent skin damage by ultraviolet (UV) radiation. However, the overproduction or deficiency of melanin synthesis could lead to serious dermatological problems, which include melasma, melanoderma, lentigo, and vitiligo. Therefore, regulating melanin production is important to prevent the pigmentation disorders. Myanmar has a rich in natural resources. However, the chemical constituents of these natural resources in Myanmar have not been fully investigated. In the effort to search for compounds with anti-melanin deposition activity from Myanmar natural resources, five plants were collected in Myanmar. Extracts of these collected five plants were tested for anti-melanin deposition activity against a mouse melanoma cell line (B16-F10) induced with ${\alpha}$-melanocyte-stimulating hormone (${\alpha}$-MSH) and 3-isobutyl-1-methylxanthine (IBMX), and their anti-melanin deposition activities were compared with the positive control, arbutin. Among the tested extracts, the CHCl3 extracts of the Premna serratifolia (syn: P. integrifolia) wood showed anti-melanin deposition activities with IC50 values of $81.3{\mu}g/mL$. Hence, this study aims to identify secondary metabolites with anti-melanin deposition activity from P. serratifolia wood of Myanmar. P. serratifolia belongs to the Verbenaceae family and is widely distributed in near western sea coast from South Asia to South East Asia, which include India, Malaysia, Vietnam, Cambodia, and Sri Lanka. People in Tanintharyi region located in the southern part of Myanmar utilize the P. serratifolia, Sperethusa crenulata, Naringi crenulata, and Limonia acidissima as Thanaka, traditional cosmetics in Myanmar. Thanaka is applied in the form of paste onto skins to make it smooth and clear, as well as to prevent wrinkles, skin aging, excessive facial oil, pimples, blackheads, and whiteheads. However, the chemical constituents responsible for their cosmetic properties are yet to be identified. Moreover, the chemical constituents of P. serratifolia was almost uncharacterized. Investigation of the P. serratifolia chemical constituents is thus an attractive endeavor to discover new anti-melanin deposition active compounds. The investigation of the chemical constituents of the active CHCl3 extract of P. serratifolia led to isolation of four new lignoids, premnan A (1), premnan B (2), taungtangyiol C (3), and 7,9-dihydroxydolichanthin B (4), together with premnan C (5) (assumed to be an artifact), one natural newlignoid,(3R,4S)-4-(1,3-benzodioxol-5-ylcarbonyl)-3-[(R)-1-(1,3-benzo dioxol-5-yl)-1-hydroxy methyl]tetrahydro-2-furanone (6), and five known compounds (7-11)1,2). The structures of all isolated compounds were determined on the basis of their spectroscopic data and by comparison with the reported literatures. The absolute configurations of 1-3 and 5 were also determined by optical rotation and circular dichroism (CD) data analyses1). The anti-melanin deposition activities of all the isolated compounds were evaluated against B16-F10 cell line. 7,9-Dihydroxydolichanthin B (4) and ($2{\alpha},3{\alpha}$)-olean-12-en-28-oic acid (11) showed strong anti-melanin deposition activities with IC50 values of 18.4 and $11.2{\mu}M$, respectively, without cytotoxicity2). On the other hand, compounds 1-3, 5, and 7 showed melanogenesis enhancing activities1). To better understand their anti-melanin deposition mechanism, the effects of 4 and 11 on tyrosinase activities were investigated. The assay indicated that compounds 4 and 11 did not inhibit tyrosinase. Furthermore, we also examined the mRNA expression of microphthalmia-associated transcription factor (MITF), tyrosinase (TYR), tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2). Compounds 4 and 11 down-regulated the expression of Tyr and Mitf mRNAs, respectively. Although the P. serratifolia wood has been used as traditional cosmetics in Myanmar for centuries, there are no scientific evidences to support its effectiveness as cosmetics. Investigation of the anti-melanin deposition activity of the chemical constituents of P. serratifolia thus provided insight into the effectiveness of the P. serratifolia wood as a cosmetic agent.

  • PDF