• Title/Summary/Keyword: Eulerian/Lagrangian Method

Search Result 211, Processing Time 0.024 seconds

Parametric Studies on the Sensitivity of Single Isolated Aluminum Particle Combustion Modeling (알루미늄 입자 연소 지배인자의 민감도 해석)

  • Lee, Sang-Hyup;Ko, Tae-Ho;Yang, Hee-Sung;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.321-327
    • /
    • 2010
  • A simplified analytical modeling for micro-sized single metal particle combustion in air was conducted in the present study. The metal particle combustion consists of two distinct reaction regimes, ignition and quasi-steady burning, and the thermo-fluidic phenomena in each stage are formulated by virtue of the conservation and transport equations. Reliability of the model is shown by rigorous validation of the method with emphasis laid on the characterizing the commanding parameters. Effects of Initial particle size, initial oxide film thickness, convection, ambient pressure and temperature are examined and addressed with validation.

  • PDF

Comparisons of Multi Material ALE and Single Material ALE in LS-DYNA for Estimation of Acceleration Response of Free-fall Lifeboat (자유낙하식 구명정의 가속도 응답 추정을 위한 LS-DYNA 에서의 다중물질 ALE 와 단일물질 ALE의 비교)

  • Bae, Dong-Myung;Zakki, Ahmad Fauzan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.552-559
    • /
    • 2011
  • An interest in Arbitrary Lagrangian Eulerian (ALE) finite element methods has been increased due to more accurate responses in Fluid-Structure Interaction(FSI) problems. The multi-material ALE approach was applied to the prediction of the acceleration response of free-fall lifeboat, and its responses were compared to those of the single-material ALE one. It could be found that even though there was no big difference in the simulation responses of two methods, the single-material and multi-material ALE ones, the latter multi-material ALE method showed a little bit more close response to those of experimental results compared to the former single-material ALE one, especially in the x- and z-direction acceleration responses. Through this study, it could be found that several parameters in the ALE algorithms have to be examined more carefully for a good structural safety assessment of FSI problems.

Investigation of structural responses of breakwaters for green water based on fluid-structure interaction analysis

  • Lee, Chi-Seung;Heo, Haeng-Sung;Kim, Young-Nam;Kim, Myung-Hyun;Kim, Sang-Hyun;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.83-95
    • /
    • 2012
  • In the present study, the structural response of breakwaters installed on container carriers against green water impact loads was numerically investigated on the basis of the fluid-structure interaction analysis. A series of numerical studies is carried out to induce breakwater collapse under such conditions, whereby a widely accepted fluid-structure interaction analysis technique is adopted to realistically consider the phenomenon of green water impact loads. In addition, the structural behaviour of these breakwaters under green water impact loads is investigated simultaneously throughout the transient analysis. A verification study of the numerical results is performed using data from actual collapse incidents of breakwaters on container carriers. On the basis of the results of a series of numerical analyses, the pressure distribution of green water was accurately predicted with respect to wave mass and velocity. It is expected that the proposed analytical methodology and predicted pressure distribution could be used as a practical guideline for the design of breakwaters on container carriers.

Impact of the Thruster Jet Flow of Ultra-large Container Ships on the Stability of Quay Walls

  • Hwang, Taegeon;Yeom, Gyeong-Seon;Seo, Minjang;Lee, Changmin;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.403-413
    • /
    • 2021
  • As the size of ships increases, the size and output power of their thrusters also increase. When a large ship berths or unberths, the jet flow produced from its thruster has an adverse effect on the stability of quay walls. In this study, we conducted a numerical analysis to examine the impact of the thruster jet flow of a 30,000 TEU container ship, which is expected to be built in the near future, on the stability of a quay wall. In the numerical simulation, we used the fluid-structure interaction analysis technique of LS-DYNA, which is calculated by the overlapping capability using an arbitrary Lagrangian Eulerian formulation and Euler-Lagrange coupling algorithm with an explicit finite element method. As the ship approached the quay wall and the vertical position of the thruster approached the mound of the quay wall, the jet flow directly affected the foot-protection blocks and armor stones. The movement and separation of the foot-protection blocks and armor stones were confirmed in the area affected directly by the thruster jet flow of the container ship. Therefore, the thruster jet flows of ultra-large ships must be considered when planning and designing ports. In addition, the stability of existing port structures must be evaluated.

Analysis on load-bearing contact characteristics of face gear tooth surface wear with installation errors

  • Fan Zhang;Xian-long Peng
    • Computers and Concrete
    • /
    • v.31 no.2
    • /
    • pp.163-171
    • /
    • 2023
  • Face gear transmission is widely used in aerospace shunt-confluence transmission system. Tooth wear is one of the main factors affecting its bearing transmission performance. Furthermore, the installation errors of face gear are inevitable. In order to study the wear mechanism of face gear tooth surface with installation errors, based on tooth contact analysis numerical method and Archard wear theory, the UMESHMOTION subroutine in ABAQUS is developed.Combining with Arbitrary Lagrangian-Eulerian adaptive mesh technology, the finite element mesh wear model of abraded face gear pair is established.The preprocessing conditions are set to generate the inp files.Then,the inp files for each corner are imported and batch processed in ABAQUS.The loading tooth contact problem at each rotation angle is solved and the load distribution coefficient among gear tooth, tooth root bending stress, tooth surface contact stress and loaded transmission error are obtained. Results show that the tooth root wear is the most serious and the wear at the pitch cone is close to 0.The wear law of tooth surface along tooth width direction is convex parabola and the wear law along tooth height direction is concave parabola.

Development of new integrated particle tracking techniques combining the numerical method, semi-analytical method, and analytical method (수치, 해석적, 준 해석적 및 해석적 방법을 통합한 새로운 입자추적기술 개발)

  • Suk, Hee-Jun
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.6
    • /
    • pp.50-61
    • /
    • 2008
  • In this study, new integrated particle tracking algorithm was developed to reduce the inherent problem of Eulerian- Lagrangian method, or adverse effect of particle tracking error on mass balance error. The new integrated particle tracking algorithm includes numerical method, semi-analytical method, and analytical method which consider both temporal and spatial changes of velocity field during time step. Detail of mathematical derivations is well illustrated and four examples are made to verify through the comparison of the new integrated particle tracking with analytical solution or Runge-Kutta method. Additionally, It was shown that the there is better superiority of the new integrated particle tracking algorithm over other existing particle tracking method such as Lu's method.

A Momentum-Exchange/Fictitious Domain-Lattice Boltzmann Method for Solving Particle Suspensions (부유 입자를 해석하기 위한 운동량 교환/가상영역-격자볼츠만 방법)

  • Jeon, Seok Yun;Yoon, Joon Yong;Kim, Chul Kyu;Shin, Myung Seob
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.347-355
    • /
    • 2016
  • This study presents a Lattice Boltzmann Method (LBM) coupled with a momentum-exchange approach/fictitious domain (MEA/FD) method for the simulation of particle suspensions. The method combines the advantages of the LB and the FD methods by using two unrelated meshes, namely, a Eulerian mesh for the flow domain and a Lagrangian mesh for the solid domain. The rigid body conditions are enforced by the momentum-exchange scheme in which the desired value of velocity is imposed directly in the particle inner domain by introducing a pseudo body force to satisfy the constraint of rigid body motion, which is the key idea of a fictitious domain (FD) method. The LB-MEA/FD method has been validated by simulating two different cases, and the results have been compared with those through other methods. The numerical evidence illustrated the capability and robustness of the present method for simulating particle suspensions.

Combined multi-predict-correct iterative method for interaction between pulsatile flow and large deformation structure

  • Wang, Wenquan;Zhang, Li-Xiang;Yan, Yan;Guo, Yakun
    • Coupled systems mechanics
    • /
    • v.1 no.4
    • /
    • pp.361-379
    • /
    • 2012
  • This paper presents a fully coupled three-dimensional solver for the analysis of interaction between pulsatile flow and large deformation structure. A partitioned time marching algorithm is employed for the solution of the time dependent coupled discretised problem, enabling the use of highly developed, robust and well-tested solvers for each field. Conservative transfer of information at the fluid-structure interface is combined with an effective multi-predict-correct iterative scheme to enable implicit coupling of the interacting fields at each time increment. The three-dimensional unsteady incompressible fluid is solved using a powerful implicit time stepping technique and an ALE formulation for moving boundaries with second-order time accurate is used. A full spectrum of total variational diminishing (TVD) schemes in unstructured grids is allowed implementation for the advection terms and finite element shape functions are used to evaluate the solution and its variation within mesh elements. A finite element dynamic analysis of the highly deformable structure is carried out with a numerical strategy combining the implicit Newmark time integration algorithm with a Newton-Raphson second-order optimisation method. The proposed model is used to predict the wave flow fields of a particular flow-induced vibrational phenomenon, and comparison of the numerical results with available experimental data validates the methodology and assesses its accuracy. Another test case about three-dimensional biomedical model with pulsatile inflow is presented to benchmark the algorithm and to demonstrate the potential applications of this method.

Study of Hot Spinning Process for Head of CNG Storage Vessel (CNG 저장용기의 두부 성형을 위한 열간스피닝 공정에 관한 연구)

  • Lee, Hyun Woo;Jung, Sung Yuen;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.547-554
    • /
    • 2013
  • The fuel storage vessel installed in CNG vehicles can be largely divided into 3 parts: head, cylinder, and dome. Studies of the cylinder and dome parts have already been performed, but sufficient design data is not available about the head part. Therefore, expert field engineers heavily depend upon trial-and-error methods. Therefore, FE analysis is performed to review the hot spinning process for forming the head part of the CNG vessel using the Arbitrary Lagrangian-Eulerian (ALE) method. The effects of forming factors on the load were analyzed. The values of the factors were chosen to avoid defects in the head part and buckling, and the forming feasibility of the head part was investigated. Furthermore, a bursting test was performed to evaluate the safety of the storage vessel.

Computation of Dynamic Fluid-Structure Interaction in a 2-Dimensional Laminar Channel Flow Divided by a Plate (판으로 나뉘어진 2차원 충류 채널유동에서 동적 유체-구조물 상호작용 수치해석)

  • Namkoong, Kak;Choi, Hyoung-Gwon;Yoo, Jung-Yul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1738-1746
    • /
    • 2002
  • In the FSI (Fluid-Structure Interaction) problems, two different governing equations are to be solved together. One is fur the fluid and the other for the structure. Furthermore, a kinematic constraint should be imposed along the boundary between the fluid and the structure. We use the combined formulation, which incorporates both the fluid and structure equations of motion into a single coupled variational equation so that it is not necessary to calculate the fluid force on the surface of structure explicitly when solving the equations of motion of the structure. A two-dimensional channel flow divided by a Bernoulli-Euler beam is considered and the dynamic response of the beam under the influence of channel flow is studied. The Navier-Stokes equations are solved using a P2P1 Galerkin finite element method with ALE (Arbitrary Lagrangian-Eulerian) algorithm. The internal structural damping effect is not considered in this study and numerical results are compared with a previous work fer steady case. In addition to the Reynolds number, two non-dimensional parameters, which govern this fluid-structure system, are proposed. It is found that the larger the dynamic viscosity and density of the fluid are, the larger the damping of the beam is. Also, the added mass is found to be linearly proportional to the density of the fluid.