• Title/Summary/Keyword: Euler-Angles

Search Result 77, Processing Time 0.019 seconds

Development of Optical Sighting System for Moving Target Tracking

  • Jeung, Bo-Sun;Lim, Sung-Soo;Lee, Dong-Hee
    • Current Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.154-163
    • /
    • 2019
  • In this study, we developed an optical sighting system capable of shooting at a long-distance target by operating a digital gyro mirror composed of a gyro sensor and an FSM. The optical sighting system consists of a reticle part, a digital gyro mirror (FSM), a parallax correction lens, a reticle-ray reflection mirror, and a partial reflection window. In order to obtain the optimal volume and to calculate the leading angle range according to the driving angle of the FSM, a calculation program using Euler rotation angles and a three-dimensional reflection matrix was developed. With this program we have confirmed that the horizontal leading angle of the developed optical sighting system can be implemented under about ${\pm}8^{\circ}$ for the maximum horizontal driving angle (${\beta}={\pm}12.5^{\circ}$) of the current FSM. Also, if the ${\beta}$ horizontal driving angle of the FSM is under about ${\pm}15.5^{\circ}$, it can be confirmed that the horizontal direction leading angle can be under ${\pm}10.0^{\circ}$. If diagonal leading angles are allowed, we confirmed that we can achieve a diagonal leading angle of ${\pm}10.0^{\circ}$ with a vertical driving angle ${\alpha}$ of ${\pm}7.1^{\circ}$ and horizontal driving angle ${\beta}$ of ${\pm}12.5^{\circ}$.

The Development of Exercise Accuracy Measurement Algorithm Supporting Personal Training's Exercise Amount Improvement

  • Oh, Seung-Taek;Kim, Hyeong-Seok;Lim, Jae-Hyun
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.57-67
    • /
    • 2022
  • The demand for personal training (PT), through which high exercise effects can be achieved within short-term, has recently increased. PT can achieve an exercise amount improvement effect, only if accurate postures are maintained upon performing PT, and exercise with inaccurate postures can cause injuries. However, research is insufficient on exercise amount comparisons and judging exercise accuracy on PT. This study proposes an exercise accuracy measurement algorithm and compares differences in exercise amounts according to exercise postures through experiments using a respiratory gas analyzer. The exercise accuracy measurement algorithm acquires Euler anglesfrom major body parts operated upon exercise through a motion device, based on which the joint angles are calculated. By comparing the calculated joint angles with each reference angle in each exercise step, the status of exercise accuracy is judged. The calculated results of exercise accuracy on squats, lunges, and push-ups showed 0.02% difference in comparison with actually measured results through a goniometer. As a result of the exercise amount comparison experiment according to accurate posture through a respiratory gas analyzer, the exercise amount was higher by 45.19% on average in accurate postures. Through this, it was confirmed that maintaining accurate postures contributes to exercise amount improvement.

Velocities Induced by Stator Arrays in a Class of Shear Flows (전단 유동중에 놓인 스테이터에 의한 유기속도)

  • E.D.,Park
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.27 no.2
    • /
    • pp.13-20
    • /
    • 1990
  • The interaction of the flows induced by stator blades with a ship-like wake is discussed to obtain the flow components of each with and without radial shear. The flow induced by stator blades is modeled by lifting line theory and the shear is taken to be provided by the radial gradient of the peripheral mean axial flow approximated by a logarithmic function of radius for a class of vessels. And the theory is based on the linearized Euler equations in the absence of viscosity. The results show that shear effects are relatively large at inner radii and the distribution of blade pitch angles is most effective in reducing non-uniformity.

  • PDF

Inverse Kinematics Analysis of 7-DOF Anthropomorphic Robot Arm using Conformal Geometric Algebra (등각 기하대수를 이용한 7자유도 로봇 팔의 역기구학 해석)

  • Kim, Je-Seok;Ji, Yong-Kwan;Park, Jahng-Hyon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.10
    • /
    • pp.1119-1127
    • /
    • 2012
  • In this paper, we present an inverse kinematics of a 7-dof Anthropomorphic robot arm using conformal geometric algebra. The inverse kinematics of a 7-dof Anthropomorphic robot arm using CGA can be computed in an easy way. The geometrically intuitive operations of CGA make it easy to compute the joint angles of a 7-dof Anthropomorphic robot arm which need to be set in order for the robot to reach its goal or the positions of a redundant robot arm's end-effector. In order to choose the best solution of the elbow position at an inverse kinematics, optimization techniques have been proposed to minimize an objective function while satisfying the euler-lagrange equation.

Fabrication of Dual-mode Ultrasonic Transducer using PZT

  • Kim, Yeon-Bo;Park, Youn-Rae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.10
    • /
    • pp.914-920
    • /
    • 2002
  • This study investigates the mechanism of a dual mode probe that generates both of the longitudinal and shear waves simultaneously with a single FZT element. Most of conventional ultrasonic probes are constructed to generate either longitudinal or shear waves. After poling, PZT has the hexagonal 6mm crystal symmetry. All possible crystal cuts are checked to determine appropriate Euler transformation angles for efficient excitation of dual modes. For the selected cut, performance of the dual mode element is analyzed through numerical simulation and experiments. Results of the analysis determine the optimal crystal cut for simultaneous generation of P and S waves of equal strength.

Parameter Identification and Simulation of Light Aircraft Based on Flight Test (비행시험을 통한 경항공기의 매개변수 확정과 시뮬레이션)

  • 황명신;이정훈
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.237-247
    • /
    • 1999
  • Flight parameters of a light aircraft in normal category named ChangGong-91 we identified from flight tests. Modified Maximum Likelihood Estimation (MMLE) is used to produce aerodynamic coefficients, stability and control derivatives. A Flight Training Device (FTD) has been developed based on the identified flight parameters. Flat earth, rigid body, and standard atmosphere are assumed in the FTD model. Euler angles are adapted for rotational state variables to reduce computational load. Variations in flight Mach number and Reynolds number are assumed to be negligible. Body, stability and inertial axes allow 6 second-order linear differential equations for translational and rotational motions. The equations of motion are integrated with respect to time, resulting in good agreements with flight tests.

  • PDF

Theory of Thin-Walled, Pretwisted Composite Beams with Elastic Couplings

  • Jung, Sung-Nam;Kim, Chang-Joo;Ko, Jin-Hwan;Kim, Chang-Wan
    • Advanced Composite Materials
    • /
    • v.18 no.2
    • /
    • pp.105-119
    • /
    • 2009
  • In this work, the structural response of thin-walled composite beams with pretwist angle is investigated by using a mixed beam approach that combines the stiffness and flexibility methods in a unified manner. The Reissner's semi-complimentary energy functional is used to derive the stiffness matrix that approximates the beam in an Euler-Bernoulli level for extension and bending and Vlasov level for torsion. The bending and torsion-related warpings induced by the pretwist effects are derived in a closed form. The developed theory is validated with available literature and detailed finite element structural analysis results using the MSC/NASTRAN. Pretwisted composite beams with rectangular solid and thin-walled box sections are illustrated to validate the current approach. Acceptable correlation has been achieved for cases considered in this study. The effects of pretwist and fiber orientation angles on the static behavior of pretwisted composite beams are also studied.

Development of an Initial Coarse Alignment Algorithm for Strapdown Inertial Navigation System (스트랩다운 관성항법시스템의 초기 개략정렬 알고리즘 개발)

  • 박찬국;김광진;박흥원;이장규
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.674-679
    • /
    • 1998
  • In this paper, a new coarse alignment algorithm is proposed for roughly determining the initial attitude of the vehicle. The algorithm, referred as two-step coarse alignment algorithm, computes roll and pitch angle of the vehicle using accelerometer outputs, and then determines yaw angle with gyro outputs. With the geometric relation between sensor outputs and attitude angles, the algorithm error is analytically derived and compared with the previous coarse alignment algorithm that computes a transformation matrix using accelerometer md gyro outputs simultaneously. The simulation is also performed by varying the sensor errors. The results show that the proposed two-step coarse alignment algorithm has better performance for east tilt angle.

  • PDF

A Control System Design for the Line-of-Sight Stabilization based on Low-Cost Inertial Sensors (저가 관성센서 기반의 시선안정화 제어시스템 설계)

  • 위정현;홍성경
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.3
    • /
    • pp.204-209
    • /
    • 2003
  • The line-of-sight stabilization system is an equipment which is loaded on a vehicle and stabilizes the direction of the line-of-sight of the vision sensor to obtain a not-swayed image in the existence of external disturbances. To obtain accurate Euler angles and angular velocities simultaneously we usually need a control system which uses high-price inertial sensors including Vertical Gyro(VG) or Rate Integrating Gyro(RIG). In this paper, we design and implement a control system of a gimbal, which is a line-of-sight stabilization system using a low-cost mixed algorithm of a rate gyro and an accelerometer instead of a VG and a RIG. In the experiment where we laid the implemented line-of-sight stabilization system on the rate table. we can see the stabilized performance to external disturbances.

Robust Control of Disturbed Magnetic Bearing Rotor Systems (외란을 받는 자기베어링 주축계의 강건제어)

  • 강호식;송오섭
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.40-46
    • /
    • 2004
  • Magnetic bearing has been adopted to support a rotor by electromagnetic force without mechanical contact and lubrication process. The recent growth of magnetic bearing applications in many industrial fields requires more accurate design of bearing-rotor system. Due to external forces and uncertainties of magnetic bearing system the actual performance and stability my be worse than it is designed. This paper describes the governing equations of rotor magnetic bearing systems and/or the designing of robust controller via standard $H_{\infty}$ control problem. The system stability and response characteristics are studied by simulations and verified with experimental results.