• Title/Summary/Keyword: Euler solution

Search Result 222, Processing Time 0.027 seconds

Study of an improved and novel venturi scrubber configuration for removal of radioactive gases from NPP containment air during severe accident

  • Farooq, Mujahid;Ahmed, Ammar;Qureshi, Kamran;Shah, Ajmal;Waheed, Khalid;Siddique, Waseem;Irfan, Naseem;Ahmad, Masroor;Farooq, Amjad
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3310-3316
    • /
    • 2022
  • Owing to the rising concerns about the safety of nuclear power plants (NPP), it is essential to study the venturi scrubber in detail, which is a key component of the filtered containment venting system (FCVS). FCVS alleviates the pressurein containment byfiltering and venting out the contaminated air. Themain objective of this research was to perform a CFD investigation of different configurations of a circular, non-submerged, self-priming venturi scrubber to estimate and improve the performance in the removal of elemental iodine from the air. For benchmarking, a mass transfer model which is based on two-film theory was selected and validated by experimental data where an alkaline solution was considered as the scrubbing solution. This mass transfer model was modified and implemented on a unique formation of two self-priming venturi scrubbers in series. Euler-Euler method was used for two-phase modeling and the realizable K-ε model was used for capturing the turbulence. The obtained results showed a remarkable improvement in the removal of radioactive iodine from the air using a series combination of venturi scrubbers. The removal efficiency was improved at every single data point.

Study on modified differential transform method for free vibration analysis of uniform Euler-Bernoulli beam

  • Liu, Zhifeng;Yin, Yunyao;Wang, Feng;Zhao, Yongsheng;Cai, Ligang
    • Structural Engineering and Mechanics
    • /
    • v.48 no.5
    • /
    • pp.697-709
    • /
    • 2013
  • A simulation method called modified differential transform is studied to solve the free vibration problems of uniform Euler-Bernoulli beam. First of all, the modified differential transform method is derived. Secondly, the modified differential transformation is applied to uniform Euler-Bernoulli beam free-free vibration. And then a set of differential equations are established. Through algebraic operations on these equations, we can get any natural frequency and normalized mode shape. Thirdly, the FEM is applied to obtain the numerical solutions. Finally, mode experimental method (MEM) is conducted to obtain experimental data for analysis by signal processing with LMS Test.lab Vibration testing and analysis system. Experimental data and simulation results are illustrated to be in comparison with the analytical solutions. The results show that the modified differential transform method can achieve good results in predicting the solution of such problems.

Dynamic response of concrete gravity dams using different water modelling approaches: westergaard, lagrange and euler

  • Altunisik, A.C.;Sesli, H.
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.429-448
    • /
    • 2015
  • The dams are huge structures storing a large amount of water and failures of them cause especially irreparable loss of lives during the earthquakes. They are named as a group of structures subjected to fluid-structure interaction. So, the response of the fluid and its hydrodynamic pressures on the dam should be reflected more accurately in the structural analyses to determine the real behavior as soon as possible. Different mathematical and analytical modelling approaches can be used to calculate the water hydrodynamic pressure effect on the dam body. In this paper, it is aimed to determine the dynamic response of concrete gravity dams using different water modelling approaches such as Westergaard, Lagrange and Euler. For this purpose, Sariyar concrete gravity dam located on the Sakarya River, which is 120km to the northeast of Ankara, is selected as a case study. Firstly, the main principals and basic formulation of all approaches are given. After, the finite element models of the dam are constituted considering dam-reservoir-foundation interaction using ANSYS software. To determine the structural response of the dam, the linear transient analyses are performed using 1992 Erzincan earthquake ground motion record. In the analyses, element matrices are computed using the Gauss numerical integration technique. The Newmark method is used in the solution of the equation of motions. Rayleigh damping is considered. At the end of the analyses, dynamic characteristics, maximum displacements, maximum-minimum principal stresses and maximum-minimum principal strains are attained and compared with each other for Westergaard, Lagrange and Euler approaches.

Geometrical Nonlinear Analyses of Post-buckled Columns with Variable Cross-section (후좌굴 변단면 기둥의 기하 비선형 해석)

  • Lee, Byoung Koo;Kim, Suk Ki;Lee, Tae Eun;Kim, Gwon Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.53-60
    • /
    • 2009
  • This paper deals with the geometrical nonlinear analyses of post-buckled columns with variable cross-section. The objective columns having variable cross-section of the width, depth and square tapers are supported by both hinged ends. By using the Bernoulli-Euler beam theory, differential equations governing the elastica of post-buckled column and their boundary conditions are derived. The solution methods of these differential equations which have two unknown parameters are developed. As the numerical results, equilibrium paths, elasticas and stress resultants of the post-buckled columns are presented. Laboratory scaled experiments were conducted for validating the theories developed in this study.

3D gravity inversion with Euler deconvolution as a priori information (오일러 디컨벌루션을 사전정보로 이용한 3 차원 중력 역산)

  • Rim, Hyoung-Rae;Park, Yeong-Sue;Lim, Mu-Taek;Koo, Sung-Bon;Kwon, Byung-Doo
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.1
    • /
    • pp.44-49
    • /
    • 2007
  • It is difficult to obtain high-resolution images by 3D gravity inversion, because the problem is extremely underdetermined - there are too many model parameters. In order to reduce the number of model parameters we propose a 3D gravity inversion scheme utilising Euler deconvolution as a priori information. The essential point of this scheme is the reduction of the nonuniqueness of solutions by restricting the inversion space with the help of Euler deconvolution. We carry out a systematic exploration of the growing body process, but only in the restricted space within a certain radius of the Euler solutions. We have tested our method with synthetic gravity data, and also applied it to a real dataset, to delineate underground cavities in a limestone area. We found that we obtained a more reasonable subsurface density image by means of this combination between the Euler solution and the inversion process.

Changes of modal properties of simply-supported plane beams due to damages

  • Xiang, Zhihai;Zhang, Yao
    • Interaction and multiscale mechanics
    • /
    • v.2 no.2
    • /
    • pp.153-175
    • /
    • 2009
  • Damage detection methods using structural dynamic responses have received much attention in the past decades. For bridge and offshore structures, these methods are usually based on beam models. To ensure the successful application of these methods, it is necessary to examine the sensitivity of modal properties to structural damages. To this end, an analytic solution is presented of the modal properties of simply-supported Euler-Bernoulli beams that contain a general damage with no additional assumptions. The damage can be a reduction in the bending stiffness or a loss of mass within a beam segment. This solution enables us to thoroughly discuss the sensitivities of different modal properties to various damages. It is observed that the lower natural frequencies and mode shapes do not change so much when a section of the beam is damaged, while the mode of rotation angle and curvature modes show abrupt change near the damaged region. Although similar observations have been reported previously, the analytical solution presented herein for clarifying the mechanism involved is considered a contribution to the literature. It is helpful for developing new damage detection methods for structures of the beam type.

HOPF BIFURCATION IN NUMERICAL APPROXIMATION OF THE SUNFLOWER EQUATION

  • Zhang Chunrui;Zheng Baodong
    • Journal of applied mathematics & informatics
    • /
    • v.22 no.1_2
    • /
    • pp.113-124
    • /
    • 2006
  • In this paper we consider the numerical solution of the sunflower equation. We prove that if the sunflower equation has a Hopf bifurcation point at a = ao, then the numerical solution with the Euler-method of the equation has a Hopf bifurcation point at ah = ao + O(h).

Exact solution for asymmetric transient thermal and mechanical stresses in FGM hollow cylinders with heat source

  • Jabbari, M.;Vaghari, A.R.;Bahtui, A.;Eslami, M.R.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.5
    • /
    • pp.551-565
    • /
    • 2008
  • Transient solution of asymmetric mechanical and thermal stresses for hollow cylinders made of functionally graded material is presented. Temperature distribution, as function of radial and circumferential directions and time, is analytically obtained, using the method of separation of variables and generalized Bessel function. A direct method is used to solve the Navier equations, using the Euler equation and complex Fourier series.

Differential transform method and numerical assembly technique for free vibration analysis of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and rotary inertias

  • Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.537-573
    • /
    • 2015
  • Multiple-step beams carrying intermediate lumped masses with/without rotary inertias are widely used in engineering applications, but in the literature for free vibration analysis of such structural systems; Bernoulli-Euler Beam Theory (BEBT) without axial force effect is used. The literature regarding the free vibration analysis of Bernoulli-Euler single-span beams carrying a number of spring-mass systems, Bernoulli-Euler multiple-step and multi-span beams carrying multiple spring-mass systems and multiple point masses are plenty, but that of Timoshenko multiple-step beams carrying intermediate lumped masses and/or rotary inertias with axial force effect is fewer. The purpose of this paper is to utilize Numerical Assembly Technique (NAT) and Differential Transform Method (DTM) to determine the exact natural frequencies and mode shapes of the axial-loaded Timoshenko multiple-step beam carrying a number of intermediate lumped masses and/or rotary inertias. The model allows analyzing the influence of the shear and axial force effects, intermediate lumped masses and rotary inertias on the free vibration analysis of the multiple-step beams by using Timoshenko Beam Theory (TBT). At first, the coefficient matrices for the intermediate lumped mass with rotary inertia, the step change in cross-section, left-end support and right-end support of the multiple-step Timoshenko beam are derived from the analytical solution. After the derivation of the coefficient matrices, NAT is used to establish the overall coefficient matrix for the whole vibrating system. Finally, equating the overall coefficient matrix to zero one determines the natural frequencies of the vibrating system and substituting the corresponding values of integration constants into the related eigenfunctions one determines the associated mode shapes. After the analytical solution, an efficient and easy mathematical technique called DTM is used to solve the differential equations of the motion. The calculated natural frequencies of Timoshenko multiple-step beam carrying intermediate lumped masses and/or rotary inertias for the different values of axial force are given in tables. The first five mode shapes are presented in graphs. The effects of axial force, intermediate lumped masses and rotary inertias on the free vibration analysis of Timoshenko multiple-step beam are investigated.