• 제목/요약/키워드: Euler parameters

검색결과 225건 처리시간 0.03초

유전 알고리즘을 이용한 6자유도 병렬기구의 최적화 설계 (Optimal Design of a 6-DOF Parallel Mechanism using a Genetic Algorithm)

  • 황윤권;윤정원
    • 제어로봇시스템학회논문지
    • /
    • 제13권6호
    • /
    • pp.560-567
    • /
    • 2007
  • The objective of this research is to optimize the designing parameters of the parallel manipulator with large orientation workspace at the boundary position of the constant orientation workspace (COW). The method uses a simple genetic algorithm(SGA) while considering three different kinematic performance indices: COW and the global conditioning index(GCI) to evaluate the mechanism's dexterity for translational motion of an end-effector, and orientation workspace of two angle of Euler angles to obtain the large rotation angle of an end-effector at the boundary position of COW. Total fifteen cases divided according to the combination of the sphere radius of COW and rotation angle of orientation workspace are studied, and to decide the best model in the total optimized cases, the fuzzy inference system is used for each case's results. An optimized model is selected as a best model, which shows better kinematic performances compared to the basis of the pre-existing model.

Stability Evaluation of One-Dimensional Flow in Solid Rocket Motors Based on Computational Fluid Dynamics

  • Kato, Takashi;Hanzawa, Masahisa;Morita, Takakazu;Shimada, Tbru
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.565-572
    • /
    • 2004
  • Numerical stability analysis of one-dimensional axial flow in solid rocket motors is performed based on the Euler equation coupled with an unsteady combustion equation of solid propellant. In order to check the numerical scheme, behavior of a standing wave in a closed tube is examined. A standing wave in solid rocket motor decays or grows depending on the total effect of propellant combustion, nozzle flow, and so on. The stability boundary of the fundamental mode standing wave is determined by changing one of the combustion parameters. In addition growth rates of the wave are calculated numerically in relatively low Mach number flow region for the motors with different port and nozzle throat diameters. The results obtained here agree well with the approximate solution. The same scheme is applied to a motor with shorter length and L*-instability is observed.

  • PDF

주기적 불안정성을 가지는 충격파 유도 연소의 무차원 해석 (Nondimensional Analysis of Periodically Unstable Shock-Induced Combustion)

  • 최정열;정인석;윤영빈
    • 한국연소학회지
    • /
    • 제1권2호
    • /
    • pp.41-49
    • /
    • 1996
  • A numerical study is conducted to investigate the periodically unstable shock induced combustion around blunt bodies in stoichiometric hydrogen-air mixtures. Euler equations are spatially discretized by upwind-biased third order scheme and temporally integrated by Runge-Kutta method. Chemistry model used in this study involves 8 elementary kinetics steps and 7 species. At a constant Mach number, the effects of projectile size, inflow pressure and inflow temperature are examined with Lehr#s experimental condition as a reference. In addition to oscillation frequency, characteristic distances and time averaged values are found from the result to find an relation with dimensionless parameters. As a result, it is found that the effects of inflow pressure and body size are very similar and $Damk{\ddot{o}}hler$ number plays an important role in determining the instability characteristics.

  • PDF

Beck 기둥의 안정성 해석 (Stability Analysis of Beck's Column)

  • 이병구;이태은;강희종;김권식
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.903-906
    • /
    • 2005
  • The purpose of this paper is to investigate free vibrations and critical loads of the uniform Beck's columns with a tip spring, carrying a tip mass. The ordinary differential equation governing free vibrations of such Beck's column subjected to a follower force is derived based on the Bernoulli-Euler beam theory. Both the divergence and flutter critical loads are calculated from the load-frequency curves that are obtained by solving the differential equation numerically. The critical loads are presented in the figures as functions of various non-dimensional system parameters such as the mass moment of inertia and spring parameter.

  • PDF

Frequency response analysis of curved embedded magneto-electro-viscoelastic functionally graded nanobeams

  • Ebrahimi, Farzad;Fardshad, Ramin Ebrahimi;Mahesh, Vinyas
    • Advances in nano research
    • /
    • 제7권6호
    • /
    • pp.391-403
    • /
    • 2019
  • In this article the frequency response analysis of curved magneto-electro-viscoelastic functionally graded (CMEV-FG) nanobeams resting on viscoelastic foundation has been carried out. To this end, the study incorporates the Euler-Bernoulli beam model in association with Eringen's nonlocal theory to incorporate the size effects. The viscoelastic foundation in the current investigation is assumed to be the combination of Winkler-Pasternak layer and viscous layer of infinite parallel dashpots. The equations of motion are derived with the aid of Hamilton's principle and the solution to vibration problem of CMEV-FG nanobeams are obtained analytically. The material gradation is considered to follow Power-law rule. This study thoroughly investigates the influence of prominent parameters such as linear, shear and viscous layers of foundation, structural damping coefficient, opening angle, magneto-electrical field, nonlocal parameter, power-law exponent and slenderness ratio on the frequencies of FG nanobeams.

Formulae for the frequency equations of beam-column system carrying a fluid storage tank

  • El-Sayed, Tamer. A.;Farghaly, Said. H.
    • Structural Engineering and Mechanics
    • /
    • 제73권1호
    • /
    • pp.83-95
    • /
    • 2020
  • In this work, a mathematical model of beam-column system carrying a double eccentric end mass system is investigated, and solved analytically based on the exact solution analysis. The model considers the case in which the double eccentric end mass is a rigid storage tank containing fluid. Both Timoshenko and Bernoulli-Euler beam bending theories are considered. Equation of motion, general solution and boundary conditions for the present system model are developed and presented in dimensional and non-dimensional format. Several important non-dimensional design parameters are introduced. Symbolic and/or explicit formulae of the frequency and mode shape equations are formulated. To the authors knowledge, the present reduced closed form symbolic and explicit frequency equations have not appeared in literature. For different applications, the results are validated using commercial finite element package, namely ANSYS. The beam-column system investigated in this paper is significant for many engineering applications, especially, in mechanical and structural systems.

Static stability analysis of axially functionally graded tapered micro columns with different boundary conditions

  • Akgoz, Bekir
    • Steel and Composite Structures
    • /
    • 제33권1호
    • /
    • pp.133-142
    • /
    • 2019
  • In the present study, microstructure-dependent static stability analysis of inhomogeneous tapered micro-columns is performed. It is considered that the micro column is made of functionally graded materials and has a variable cross-section. The material and geometrical properties of micro column vary continuously throughout the axial direction. Euler-Bernoulli beam and modified couple stress theories are used to model the nonhomogeneous micro column with variable cross section. Rayleigh-Ritz solution method is implemented to obtain the critical buckling loads for various parameters. A detailed parametric study is performed to examine the influences of taper ratio, material gradation, length scale parameter, and boundary conditions. The validity of the present results is demonstrated by comparing them with some related results available in the literature. It can be emphasized that the size-dependency on the critical buckling loads is more prominent for bigger length scale parameter-to-thickness ratio and changes in the material gradation and taper ratio affect significantly the values of critical buckling loads.

Effects of porosity models on static behavior of size dependent functionally graded beam

  • Hamed, Mostafa A.;Sadoun, Ayman M.;Eltaher, Mohamed A.
    • Structural Engineering and Mechanics
    • /
    • 제71권1호
    • /
    • pp.89-98
    • /
    • 2019
  • In this study, the mechanical bending behaviors of functionally graded porous nanobeams are investigated. Four types of porosity which are, the classical power porosity function, the symmetric with mid-plane cosine function, bottom surface distribution and top surface distribution are proposed in analysis of nanobeam for the first time. A comparison between four types of porosity are illustrated. The effect of nano-scale is described by the differential nonlocal continuum theory of Eringen by adding the length scale into the constitutive equations as a material parameter comprising information about nanoscopic forces and its interactions. The graded material is designated by a power function through the thickness of nanobeam. The beam is simply-supported and is assumed to be thin, and hence, the kinematic assumptions of Euler-Bernoulli beam theory are held. The mathematical model is solved numerically using the finite element method. Numerical results show effects of porosity type, material graduation, and nanoscale parameters on the static deflection of nanobeam.

NSGT-based acoustical wave dispersion characteristics of thermo-magnetically actuated double-nanobeam systems

  • Ebrahimi, Farzad;Dabbagh, Ali
    • Structural Engineering and Mechanics
    • /
    • 제68권6호
    • /
    • pp.701-711
    • /
    • 2018
  • Herein, the thermo-magneto-elastic wave dispersion answers of functionally graded (FG) double-nanobeam systems (DNBSs) are surveyed implementing a nonlocal strain gradient theory (NSGT). The kinematic relations are derived employing the classical beam theory. Also, scale influences are covered precisely in the framework of NSGT. Moreover, Mori-Tanaka homogenization model is introduced in order to obtain the effective material properties of FG nanobeams. Meanwhile, effects of external forces such as thermal and Lorentz forces are included in this research. Also, based upon the Hamilton's principle, the Euler-Lagrange equations are developed; afterwards, these equations are incorporated with those of NSGT to reach the nonlocal governing equations of FG-DNBSs. Furthermore, according to an analytical approach, the governing equations are solved to obtain the wave frequencies and phase velocities of FG-DNBSs. At the end, some illustrations are rendered to clarify the influences of a wide range of involved parameters.

Nonlinear vibration and stability of FG nanotubes conveying fluid via nonlocal strain gradient theory

  • Dang, Van-Hieu;Sedighi, Hamid M.;Chan, Do Quang;Civalek, Omer;Abouelregal, Ahmed E.
    • Structural Engineering and Mechanics
    • /
    • 제78권1호
    • /
    • pp.103-116
    • /
    • 2021
  • In this work, a model of a functionally graded (FG) nanotube conveying fluid embedded in an elastic medium is developed based on the nonlocal strain gradient theory (NSGT) in conjunction with Euler-Bernoulli beam theory (EBT). The main objective of this research is to investigate the nonlinear vibration and stability analysis of fluid-conveying nanotubes. The governing equations of motion are derived by means of Hamiltonian principle. The analytical expressions of nonlinear frequencies and critical flow velocities for two different types of boundary conditions including pinned-pinned (P-P) and clamped-clamped (C-C) conditions are obtained by employing Galerkin method as well as Hamiltonian Approach (HA). Comparison of the obtained results with the published works show the acceptable accuracy of the current solutions. The effects of the power-law index, the nonlocal and material length scale parameters and the elastic medium on the stability and nonlinear responses of FG nanotubes are thoroughly investigated and discussed.