• Title/Summary/Keyword: Euler angle estimation

Search Result 12, Processing Time 0.025 seconds

Euler Angle-Based Global Motion Estimation Model for Digital Image Stabilization (디지털 영상 안정화를 위한 오일러각 기반 전역 움직임 추정 모델)

  • Kwak, Hwy-Kuen;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.11
    • /
    • pp.1053-1059
    • /
    • 2010
  • This paper treats the DIS (Digital Image Stabilization) problem subject to base motions such as translation, rotation and zoom. For the local motion estimation from a raw image, the Harris corner detection algorithm is exploited to extract feature points, and comparing those of consecutive images, the zoom ratio (scale factor) is computed. For the global motion estimation, an equivalent model is derived to account for a 3-dimensional composite motion from which the center point and Euler angle can be determined. Finally, the motion compensation follows. To show the effectiveness of the present DIS scheme, experimental results for synthetic images are illustrated.

Design of Sensor Network for Estimation of the Shape of Flexible Endoscope (연성 대장내시경의 형상추정을 위한 센서네트워크의 설계)

  • Lee, Jae-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.2
    • /
    • pp.299-306
    • /
    • 2016
  • In this paper, a method of shape prediction of an endoscope handling robot that can imitate a surgeon's behavior using a sensor network is suggested. Unit sensors, which are composed of a 3-axis magnetometer and 3-axis accelerometer pair comprise the network through CAN bus communication. Each unit of the sensor is used to detect the angle of the points in the longitudinal direction of the robot, which is made from a flexible tube. The signals received from the sensor network were filtered using a low pass Butterworth filter. Here, a Butterworth filter was designed for noise removal. Finally, the Euler angles were extracted from the signals, in which the noise was filtered by the low path Butterworth filter. Using this Euler angle, the position of each sensor on the sensor network is estimated. The robot body was assumed to consist of links and joints. The position of each sensor can be assumed to be attached to the center of each link. The position of each link was determined using the Euler angle and kinematics equation. The interpolation was carried out between the positions of the sensors to be able to connect each point smoothly and obtain the final posture of the endoscope in operation. The experimental results showed that the shape of the colonoscope can be visualized using the Euler angles evaluated from the sensor network suggested and the shape of serial link estimated from the kinematics chain model.

The design of attitude reference system for underwater vehicle using extended kalman filter (확장칼만필터를 이용한 수중 운동체의 자세계산 시스템 설계)

  • 홍현수;박찬국;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1352-1355
    • /
    • 1997
  • This paper presents the algorithm for estimating the attitude of an underwater vehicle using EFK. The system model is designed by linerizing the nonlinear Euler angle differential equation and the measurements is a speed logger output. The simulation result shows that the estimation lagorithm is adequate for decreasing attitude errors that grow abruptly during the motion with acceleration and rotation. It also shows that we can adapt the algorithm for compensating initial attitude errors generated after initial leveling.

  • PDF

Vehicle Orientation Estimation by Using Magnetometer and Inertial Sensors (3축 자기장 센서 및 관성센서를 이용한 차량 방위각 추정 방법)

  • Hwang, Yoonjin;Choi, Seibum
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.4
    • /
    • pp.408-415
    • /
    • 2016
  • The vehicle attitude and sideslip is critical information to control the vehicle to prevent from unintended motion. Many of estimation strategy use bicycle model or IMU integration, but both of them have limits on application. The main purpose of this paper is development of vehicle orientation estimator which is robust to various vehicle state and road shape. The suggested estimator use 3-axis magnetometer, yaw rate sensor and lateral acceleration sensor to estimate three Euler angles of vehicle. The estimator is composed of two individual observers: First, comparing the known magnetic field and gravity with measured value, the TRIAD algorithm calculates optimal rotational matrix when vehicle is in static or quasi-static condition. Next, merging 3-axis magnetometer with inertial sensors, the extended Kalman filter is used to estimate vehicle orientation under dynamic condition. A validation through simulation tools, Carsim and Simulink, is performed and the results show the feasibility of the suggested estimation method.

Performance Improvement of Attitude Estimation Using Modified Euler Angle Based Kalman Filter (변형된 오일러각 기반의 칼만필터를 이용한 자세 추정 성능 향상)

  • Kang, Chul-Woo;Yoo, Young-Min;Park, Chan-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.881-885
    • /
    • 2008
  • To calculate the attitude in ARS(Attitude Reference System) using 3 gyros and 3 accelerometers, gyro drift must be compensated with accelerometer to avoid divergence of attitude error. Kalman filter is most popular method to integrate those two sensor outputs. In this paper, new Kalman filtering method is proposed for roll and pitch attitude estimation. New states are defined to make linear equation and algorithm for changing Kalman filter parameters is proposed to ignore disturbances of acceleration. This algorithm can be easily applied to low cost ARS.

Assessment of discomfort in elbow motion from driver posture (운전자 자세에 따른 팔꿈치 동작의 불편도 평가)

  • Tak, Tae-Oh;Lee, Pyoung-Rim
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.265-272
    • /
    • 2001
  • The human arm is modeled by three rigid bodies(the upper arm, the forearm and the hand)with seven degree of freedom(three in the shoulder, two in the elbow and two in the wrist). The objective of this work is to present a method to determine the three-dimensional kinematics of the human elbow joint using a magnetic tracking device. Euler angle were used to determine the elbow flexion-extension, and the pronation-supination. The elbow motion for the various driving conditions is measured through the driving test using a simulator. Discomfort levels of elbow joint motions were obtained as discomfort functions, which were based on subjects' perceived discomfort level estimated by magnitude estimation. The results showed that the discomfort posture of elbow joint motions occurred in the driving motion.

  • PDF

Development of Attitude Constraints for Real-time Attitude Determination System using GPS carrier phase

  • Jang, Jae-Gyu;Kee, Chang-Don
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.17-22
    • /
    • 2005
  • As one of validation tool for attitude determination system, we have used various constraints using priori information which is known through base vector set up. However these conventional constraints cannot guarantee validity in terms of final solutions such as Euler angle. So we suggest attitude boundary concept to verify the final attitude solution on the flying airplane, it is based on the combination of velocity based attitude estimation technique and ambiguity resolution. we can say it can check invalid solution effectively at just one epoch without repeatability test of resolved cycle ambiguity. In this paper we show that the suggested constraint can effectively reject incorrectly resolved cycle ambiguity the conventional constraints have missed.

DEVELOPMENT OF PRECISION ATTITUDE DETERMINATION SYSTEM FOR KOMPSAT-2

  • Yoon Jae-Cheol;Shin Dongseok;Lee Hungu;Lee Young-Ran;Lee Hyunjae;Bang Hyo-Choong;Cheon Yee-Jin;Shin Jae-Min;Moon Hong-Youl;Lee Sang-Ryool;Jeun Gab-Ho
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.296-299
    • /
    • 2004
  • KARI precision attitude determination system has been developed for high accurate geo-coding of KOMPSAT-2 image. Sensor data from two star trackers and a IRU are used as measurement and dynamic data. Sensor data from star tracker are composed of QUEST and unit vector filter. Filter algorithms consists of extended Kalman filter, unscented Kalman filter, and least square batch filter. The type of sensor data and filter algorithm can be chosen by user options. Estimated parameters are Euler angle from 12000 frame to optical bench frame, gyro drift rate bias, gyro scale factor, misalignment angle of star tracker coordinate frame with respect to optical bench frame, and misalignment angle of gyro coordinate frame with respect to optical bench frame. In particular, ground control point data can be applied for estimating misalignment angle of star tracker coordinate frame. Through the simulation, KPADS is able to satisfy the KOMPSAT-2 mission requirement in which geo-location accuracy of image is 80 m (CE90) without ground control point.

  • PDF

Axial Turbine Aerodynamic Design of Small Heavy-Duty Gas Turbines (발전용 소형가스터빈의 축류터빈 공력설계)

  • Kim, Joung Seok;Lee, Wu Sang;Ryu, Je Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.4
    • /
    • pp.415-421
    • /
    • 2013
  • This study describes the aerodynamic design procedure for the axial turbines of a small heavy-duty gas turbine engine being developed by Doosan Heavy Industries. The design procedure mainly consists of three parts: namely, flowpath design, airfoil design, and 3D performance calculation. To design the optimized flowpath, through-flow calculations as well as the loss estimation are widely used to evaluate the effect of geometric variables, for example, shape of meridional plane, mean radius, blades axial gap, and hade angle. During the airfoil design procedure, the optimum number of blades is calculated by empirical correlations based on the in/outlet flow angles, and then 2D airfoil planar sections are designed carefully, followed by 2D B2B NS calculations. The designed planar sections are stacked along the spanwise direction, leading to a 3D surfaced airfoil shape. To consider the 3D effect on turbine performance, 3D multistage Euler calculation, single row, and multistage NS calculations are performed.

Localization on an Underwater Robot Using Monte Carlo Localization Algorithm (몬테카를로 위치추정 알고리즘을 이용한 수중로봇의 위치추정)

  • Kim, Tae-Gyun;Ko, Nak-Yong;Noh, Sung-Woo;Lee, Young-Pil
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.2
    • /
    • pp.288-295
    • /
    • 2011
  • The paper proposes a localization method of an underwater robot using Monte Carlo Localization(MCL) approach. Localization is one of the fundamental basics for autonomous navigation of an underwater robot. The proposed method resolves the problem of accumulation of position error which is fatal to dead reckoning method. It deals with uncertainty of the robot motion and uncertainty of sensor data in probabilistic approach. Especially, it can model the nonlinear motion transition and non Gaussian probabilistic sensor characteristics. In the paper, motion model is described using Euler angles to utilize the MCL algorithm for position estimation of an underwater robot. Motion model and sensor model are implemented and the performance of the proposed method is verified through simulation.