• Title/Summary/Keyword: Euler's Beam Element

Search Result 41, Processing Time 0.042 seconds

A new approach to modeling the dynamic response of Bernoulli-Euler beam under moving load

  • Maximov, J.T.
    • Coupled systems mechanics
    • /
    • v.3 no.3
    • /
    • pp.247-265
    • /
    • 2014
  • This article discusses the dynamic response of Bernoulli-Euler straight beam with angular elastic supports subjected to moving load with variable velocity. A new engineering approach for determination of the dynamic effect from the moving load on the stressed and strained state of the beam has been developed. A dynamic coefficient, a ratio of the dynamic to the static deflection of the beam, has been defined on the base of an infinite geometrical absolutely summable series. Generalization of the R. Willis' equation has been carried out: generalized boundary conditions have been introduced; the generalized elastic curve's equation on the base of infinite trigonometric series method has been obtained; the forces of inertia from normal and Coriolis accelerations and reduced beam mass have been taken into account. The influence of the boundary conditions and kinematic characteristics of the moving load on the dynamic coefficient has been investigated. As a result, the dynamic stressed and strained state has been obtained as a multiplication of the static one with the dynamic coefficient. The developed approach has been compared with a finite element one for a concrete engineering case and thus its authenticity has been proved.

On the dynamics of rotating, tapered, visco-elastic beams with a heavy tip mass

  • Zeren, Serkan;Gurgoze, Metin
    • Structural Engineering and Mechanics
    • /
    • v.45 no.1
    • /
    • pp.69-93
    • /
    • 2013
  • The present study deals with the dynamics of the flapwise (out-of-plane) vibrations of a rotating, internally damped (Kelvin-Voigt model) tapered Bernoulli-Euler beam carrying a heavy tip mass. The centroid of the tip mass is offset from the free end of the beam and is located along its extended axis. The equation of motion and the corresponding boundary conditions are derived via the Hamilton's Principle, leading to a differential eigenvalue problem. Afterwards, this eigenvalue problem is solved by using Frobenius Method of solution in power series. The resulting characteristic equation is then solved numerically. The numerical results are tabulated for a variety of nondimensional rotational speed, tip mass, tip mass offset, mass moment of inertia, internal damping parameter, hub radius and taper ratio. These are compared with the results of a conventional finite element modeling as well, and excellent agreement is obtained.

Free Vibrations of Horizontally Curved Beams Resting on Winkler-Type Foundations (Winkler형 지반위에 놓인 수평 곡선보의 자유진동)

  • 오상진;이병구;이인원
    • Journal of KSNVE
    • /
    • v.8 no.3
    • /
    • pp.524-532
    • /
    • 1998
  • The purpose of this paper is to investigate the free vibrations of horizontally curved beams resting on Winkler-type foundations. Based on the classical Bernoulli-Euler beam theory, the governing differential equations for circular curved beams are derived and solved numerically. Hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered in numerical examples. The free vibration frequencies calculated using the present analysis have been compared with the finite element's results computed by the software ADINA. Numerical results are presented to show the effects on the natural frequencies of curved beams of the horizontal rise to span length ratio, the foundation parameter, and the width ratio of contact area between the beam and foundation.

  • PDF

Free vibration analysis of rotating beams with random properties

  • Hosseini, S.A.A.;Khadem, S.E.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.3
    • /
    • pp.293-312
    • /
    • 2005
  • In this paper, free vibration of rotating beam with random properties is studied. The cross-sectional area, elasticity modulus, moment of inertia, shear modulus and density are modeled as random fields and the rotational speed as a random variable. To study uncertainty, stochastic finite element method based on second order perturbation method is applied. To discretize random fields, the three methods of midpoint, interpolation and local average are applied and compared. The effects of rotational speed, setting angle, random property variances, discretization scheme, number of elements, correlation of random fields, correlation function form and correlation length on "Coefficient of Variation" (C.O.V.) of first mode eigenvalue are investigated completely. To determine the significant random properties on the variation of first mode eigenvalue the sensitivity analysis is performed. The results are studied for both Timoshenko and Bernoulli-Euler rotating beam. It is shown that the C.O.V. of first mode eigenvalue of Timoshenko and Bernoulli-Euler rotating beams are approximately identical. Also, compared to uncorrelated random fields, the correlated case has larger C.O.V. value. Another important result is, where correlation length is small, the convergence rate is lower and more number of elements are necessary for convergence of final response.

Finite element modeling and bending analysis of piezoelectric sandwich beam with debonded actuators

  • Rao, K. Venkata;Raja, S.;Munikenche, T.
    • Smart Structures and Systems
    • /
    • v.13 no.1
    • /
    • pp.55-80
    • /
    • 2014
  • The present work pays emphasis on investigating the effect of different types of debonding on the bending behaviour of active sandwich beam, consisting of both extension and shear actuators. An active sandwich beam finite element is formulated by using Timoshenko's beam theory, characterized by first order shear deformation for the core and Euler-Bernoulli's beam theory for the top and bottom faces. The problem of debondings of extension actuator and face are dealt with by employing four-region model for inner debonding and three-region model for the edge debonding respectively. Displacement based continuity conditions are enforced at the interfaces of different regions using penalty method. Firstly, piezoelectric actuation of healthy sandwich beam is assessed through deflection analysis. Then the effect of actuators' debondings with different boundary conditions on bending behavior is computationally evaluated and experimentally clamped-free case is validated. The results generated will be useful to address the damage tolerant design procedures for smart sandwich beam structures with structural control and health monitoring applications.

Analysis of Lamb wave propagation on a plate using the spectral element method (스펙트럼 요소법을 이용한 판 구조물의 램파 전달 해석)

  • Lim, Ki-Lyong;Kim, Eun-Jin;Choi, Kwang-Kyu;Park, Hyun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.71-81
    • /
    • 2008
  • This paper proposes a spectral element which can represent dynamic responses in high frequency domain such as Lamb waves on a thin plate. A two layer beam model under 2-D plane strain condition is introduced to simulate high-frequency dynamic responses induced by piezoelectric layer (PZT layer) bonded on a base plate. In the two layer beam model, a PZT layer is assumed to be rigidly bonded on a base beam. Mindlin-Herrmann and Timoshenko beam theories are employed to represent the first symmetric and anti-symmetric Lamb wave modes on a base plate, respectively. The Bernoulli beam theory and 1-D linear piezoelectricity are used to model the electro-mechanical behavior of a PZT layer. The equations of motions of a two layer beam model are derived through Hamilton's principle. The necessary boundary conditions associated with electro mechanical properties of a PZT layer are formulated in the context of dual functions of a PZT layer as an actuator and a sensor. General spectral shape functions of response field and the associated boundary conditions are formulated through equations of motions converted into frequency domain. A detailed spectrum element formulation for composing the dynamic stiffness matrix of a two layer beam model is presented as well. The validity of the proposed spectral element is demonstrated through comparison results with the conventional 2-D FEM and the previously developed spectral elements.

  • PDF

Dynamic Response Analysis of Stiffened Plates Subjected Plates Subjected to Moving Loads (이동하중을 받는 보강판의 동응답해석)

  • 정정훈;정태영
    • Journal of KSNVE
    • /
    • v.3 no.1
    • /
    • pp.57-63
    • /
    • 1993
  • The dynamic response of stiffened rectangular plate subjected to a concentrated force or mass moving at constant speed is analyzed by using finite- element method. Stiffened plates are modelled as an assembly of isotropic thin plate elements and equivalent Euler beam ones, in which the beam elements represent the stiffener effects concentrated at the attached lines of stiffeners to the plates. The Newmark's time integration method is used to obtain the dynamic response of stiffened plates. Numerical examples are given to verify the validity of the presented method and also to investigate the effects of speed and moving mass on the dynamic characteristics of stiffened plates.

  • PDF

Crack identification in beam-like structures using multi-mass system and wavelet transform

  • Siamak Ghadimi;Seyed Sina Kourehli;Gholamreza Zamani-Ahari
    • Earthquakes and Structures
    • /
    • v.27 no.4
    • /
    • pp.263-283
    • /
    • 2024
  • This research introduces a new composite system that utilizes multiple moving masses to identify cracks in structures resembling beams. The process starts by recording displacement time data from a set of these moving masses and converting this information into a relative time history through weighted aggregation. This relative time history then undergoes wavelet transform analysis to precisely locate cracks. Following wavelet examinations, specific points along the beam are determined as potential crack sites. These points, along with locations on the beam susceptible to cracked point due to support conditions, are marked as crack locations within the optimization algorithm's search domain. The model uses equations of motion based on the finite element method for the moving masses on the beam and employs the Runge-Kutta numerical solution within the state space. The proposed system consists of three successive moving masses positioned at even intervals along the beam. To assess its effectiveness, the method is tested on two examples: a simply supported beam and a continuous beam, each having three scenarios to simulate the presence of one or multiple cracks. Additionally, another example investigates the influence of mass speed, spacing between masses, and noise effect. The outcomes showcase the method's effectiveness and efficiency in localizing crack, even in the presence of noise effect in 1%, 5% and 20%.

Wave propagation of a functionally graded beam in thermal environments

  • Akbas, Seref Doguscan
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1421-1447
    • /
    • 2015
  • In this paper, the effect of material-temperature dependent on the wave propagation of a cantilever beam composed of functionally graded material (FGM) under the effect of an impact force is investigated. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. Material properties of the beam are temperature-dependent and change in the thickness direction. The Kelvin-Voigt model for the material of the beam is used. The considered problem is investigated within the Euler-Bernoulli beam theory by using energy based finite element method. The system of equations of motion is derived by using Lagrange's equations. The obtained system of linear differential equations is reduced to a linear algebraic equation system and solved in the time domain and frequency domain by using Newmark average acceleration method. In order to establish the accuracy of the present formulation and results, the comparison study is performed with the published results available in the literature. Good agreement is observed. In the study, the effects of material distributions and temperature rising on the wave propagation of the FGM beam are investigated in detail.

Comparative study of finite element analysis and generalized beam theory in prediction of lateral torsional buckling

  • Sharma, Shashi Kant;Kumar, K.V. Praveen;Akbar, M. Abdul;Rambabu, Dadi
    • Advances in materials Research
    • /
    • v.11 no.1
    • /
    • pp.59-73
    • /
    • 2022
  • In the construction industry, thin-walled frame elements with very slender open cross-sections and low torsional stiffness are often subjected to a complex loading condition where axial, bending, shear and torsional stresses are present simultaneously. Hence, these often fail in instability even before the yield capacity is reached. One of the most common instability conditions associated with thin-walled structures is Lateral Torsional Buckling (LTB). In this study, a first order Generalized Beam Theory (GBT) formulation and numerical analysis of cold-formed steel lipped channel beams (C80×40×10×1, C90×40×10×1, C100×40×10×1, C80×40×10×1.6, C90×40×10×1.6 and C100×40×10×1.6) subjected to uniform moment is carried out to predict pure Lateral Torsional Buckling (LTB). These results are compared with the Finite Element Analysis of the beams modelled with shell elements using ABAQUS and analytical results based on Euler's buckling formula. The mode wise deformed shape and modal participation factors are obtained for comparison of the responses along with the effect of varying the length of the beam from 2.5 m to 10 m. The deformed shapes of the beam for different modes and GBTUL plots are analyzed for comparative conclusions.