• Title/Summary/Keyword: Eukaryotic Elongation Factor 2(eEF2)

Search Result 7, Processing Time 0.019 seconds

Phosphorylation of Eukaryotic Elongation Factor 2 Can Be Regulated by Phosphoinositide 3-Kinase in the Early Stages of Myoblast Differentiation

  • Woo, Joo Hong;Kim, Hye Sun
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.294-301
    • /
    • 2006
  • We have previously reported that phosphorylation of eukaryotic elongation factor 2 (eEF2) is related to the differentiation of chick embryonic muscle cells in culture. In the present study, we found that eEF2 phosphorylation declined shortly after induction of differentiation of L6 myoblasts, when the cells prepare for terminal differentiation by withdrawing from the cell cycle. This decrease in phosphorylation was prevented by inhibitors of phosphoinositide 3-kinase (PI3-kinase) that strongly inhibit myoblast differentiation. We hypothesized that PI3-kinase plays an important role in myoblast differentiation by regulating eEF2 phosphorylation in the early stages of differentiation. To test this hypothesis, myoblasts were synchronized at in $G_2/M$ and cultured in fresh differentiation medium (DM) or growth medium (GM). In DM the released cells accumulated in $G_0$/$G_1$ while in GM they progressed to S phase. In addition, cyclin D1 was more rapidly degraded in DM than in GM, and eEF2 phosphorylation decreased more. Inhibitors of PI3-kinase increased eEF2 phosphorylation, but PI3-kinase became more activated when eEF2 phosphorylation declined. These results suggest that the regulation of L6 myoblast differentiation by PI3-kinase is related to eEF2 phosphorylation.

Clinical Value of Eukaryotic Elongation Factor 2 (eEF2) in Non-small Cell Lung Cancer Patients

  • Sun, Hong-Gang;Dong, Xue-Jun;Lu, Tao;Yang, Ming-Feng;Wang, Xing-Mu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6533-6535
    • /
    • 2013
  • Background: The purpose of this study was to evaluate a new type of tumor biomarker, eukaryotic elongation factor 2 (eEF2), in serum for the early diagnosis, confirmative diagnosis as well as assessment of treatment of non-small cell lung cancer (NSCLC). Methods: 130 patients with NSCLC and 50 healthy individuals undergoing physical examination in our hospital provided the observation and healthy control groups. An enzyme linked immune sorbent assay (ELISA) method was applied to determine serum eEF2 levels. Serum neuron specific enolase (NSE) and squamous cell carcinoma antigen (SCC) levels in the observation group were assessed with an automatic biochemical analyzer. Results: The median levels of eEF2 in the serum of NSCLC patients was found to be significantly higher than the healthy control group (p < 0.01) and it was markedly higher in stages III, IV than stages I, II (p < 0.05). eEF2 was higher with tumor size ${\geq}2$ cm than <2 cm (P< 0.01). Furthermore, two weeks after surgery patients showed a significant trend for eEF2 decrease (p < 0.05). Conclusions: The eukaryotic elongation factor 2 (eEF2) has certain clinical values for early diagnosis, verification, and prognosis as well as classification of lung cancer patients.

Phosphorylation of Elongation Factor-2 And Activity Of Ca2+/Calmodulin-Dependent Protein Kinase III During The Cell Cycle

  • Suh, Kyong-Hoon
    • BMB Reports
    • /
    • v.33 no.2
    • /
    • pp.103-111
    • /
    • 2000
  • Phosphorylation of the eukaryotic elongation factor 2 (eEF-2) blocks the elongation step of translation and stops overall protein synthesis. Although the overall rate of protein synthesis in mitosis reduces to 20% of that in S phase, it is unclear how the protein translation procedure is regulated during the cell cycle, especially in the stage of peptide elongation. To delineate the regulation of the elongation step through eEF-2 function, the changes in phosphorylation of eEF-2, and in activity of corresponding $Ca^{2+}$/calmodulin (CaM)-dependent protein kinase III (CaMK-III) during the cell cycle of NIH 3T3 cells, were determined. The in vivo level of phosphorylated eEF-2 showed an 80% and 40% increase in the cells arrested at G1 and M, respectively. The activity of CaMK-III also changed in a similar pattern, more than a 2-fold increase when arrested at G1 and M. The activity change of the kinase during one turn of the cell cycle also demonstrated the activation at G1 and M phases. The activity change of cAMP-dependent protein kinase (PKA) was reciprocal to that of CaMK-III. These results indicated: (1) the activity of CaMK-III was cell cycle-dependent and (2) the level of eEF-2 phosphorylation followed the kinase activity change. Therefore, the elongation step of protein synthesis might be cell cycle dependently regulated.

  • PDF

Translation elongation factor-1A1 (eEF1A1) localizes to the spine by domain III

  • Cho, Sun-Jung;Lee, Hyun-Sook;Dutta, Samikshan;Seog, Dae-Hyun;Moon, Il-Soo
    • BMB Reports
    • /
    • v.45 no.4
    • /
    • pp.227-232
    • /
    • 2012
  • In vertebrates, there are two variants of eukaryotic peptide elongation factor 1A (eEF1A; formerly eEF-$1{\alpha}$), eEF1A1 and eEF1A2, which have three well-conserved domains ($D_I$, $D_{II}$, and $D_{III}$). In neurons, eEF1A1 is the embryonic type, which is expressed during embryonic development as well as the first two postnatal weeks. In the present study, EGFP-tagged eEF1A1 truncates were expressed in cortical neurons isolated from rat embryo (E18-19). Live cell images of transfected neurons showed that $D_{III}$-containing EGFP-fusion proteins (EGFP-$D_{III}$, -$D_{II-III}$, -$D_{I-III}$) formed clusters that were confined within somatodendritic domains, while $D_{III}$-missing ones (EGFP-$D_I$, -$D_{II}$, -$D_{I-II}$) and control EGFP were homogeneously dispersed throughout the neuron including axons. In dendrites, EGFP-$D_{III}$ was targeted to the heads of spine- and filopodia-like protrusions, where it was colocalized with $SynGAP{\alpha}$, a postsynaptic marker. Our data indicate that $D_{III}$ of eEF1A1 mediates formation of clusters and localization to spines.

Phosphoinositide 3-kinase regulates myogenin expression at both the transcriptional and post-transcriptional level during myogenesis

  • Woo, Joo-Hong;Kim, Min-Jeong;Kim, Hye-Sun
    • Animal cells and systems
    • /
    • v.14 no.3
    • /
    • pp.147-154
    • /
    • 2010
  • It is well-established that phosphoinositide 3-kinase (PI3-kinase) regulates myogenesis by inducing transcription of myogenin, a key muscle regulatory factor, at the initiation of myoblast differentiation. In this study, we investigated the role of PI3-kinase in cells that have committed to differentiation. PI3-kinase activity increases during myogenesis, and this increase is sustained during the myogenic process; however, its function after the induction of differentiation has not been investigated. We show that LY294002, a PI3-kinase inhibitor, blocked myoblast fusion even after myogenin expression initially increased. In contrast to the inhibitory effects of LY294002 on myogenin mRNA levels during the initiation of differentiation, LY294002 blocked the accumulation of myogenin protein without affecting its mRNA level after differentiation was induced. Treatment with cycloheximide, a translation inhibitor, or actinomycin D, a transcription inhibitor, indicated that the stability of myogenin protein is lower than that of its mRNA. LY294002 inhibited the activities of several important translation factors, including eukaryotic elongation factor-2(eEF2), by altering their phosphorylation status. In addition, LY294002 blocked the incorporation of [$^{35}S$]methionine into newly synthesized proteins. Since myogenin has a relatively short half-life, LY294002-mediated inhibition of post-transcriptional processes resulted in a rapid depletion of myogenin protein. In summary, these results suggest that PI3-kinase plays an important role in regulating the expression of myogenin through post-transcriptional mechanisms after differentiation has been induced.

EGCG Blocked Phenylephrin-Induced Hypertrophy in H9C2 Cardiomyocytes, by Activating AMPK-Dependent Pathway

  • Cai, Yi;Zhao, Li;Qin, Yuan;Wu, Xiao-Qian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.3
    • /
    • pp.203-210
    • /
    • 2015
  • AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism. Previous studies have shown that activation of AMPK results in suppression of cardiac myocyte hypertrophy via inhibition of the p70S6 kinase (p70S6K) and eukaryotic elongation factor-2 (eEF2) signaling pathways. Epigallocatechin-3-gallate (EGCG), the major polyphenol found in green tea, possesses multiple protective effects on the cardiovascular system including cardiac hypertrophy. However, the molecular mechanisms has not been well investigated. In this study, we found that EGCG could significantly reduce natriuretic peptides type A (Nppa), brain natriuretic polypeptide (BNP) mRNA expression and decrease cell surface area in H9C2 cardiomyocytes stimulated with phenylephrine (PE). Moreover, we showed that AMPK is activated in H9C2 cardiomyocytes by EGCG, and AMPK-dependent pathway participates in the inhibitory effects of EGCG on cardiac hypertrophy. Taken together, our findings provide the first evidence that the effect of EGCG against cardiac hypertrophy may be attributed to its activation on AMPK-dependent signaling pathway, suggesting the therapeutic potential of EGCG on the prevention of cardiac remodeling in patients with pressure overload hypertrophy.

Effect of serotonin on the cell viability of the bovine mammary alveolar cell-T (MAC-T) cell line

  • Xusheng, Dong;Chen, Liu;Jialin, Miao;Xueyan, Lin;Yun, Wang;Zhonghua, Wang;Qiuling, Hou
    • Journal of Animal Science and Technology
    • /
    • v.64 no.5
    • /
    • pp.922-936
    • /
    • 2022
  • 5-Hydroxytryptamine (5-HT), a monoamine, as a local regulator in the mammary gland is a chemical signal produced by the mammary epithelium cell. In cows, studies have shown that 5-HT is associated with epithelial cell apoptosis during the degenerative phase of the mammary gland. However, studies in other tissues have shown that 5-HT can effectively promote cell viability. Whether 5-HT could have an effect on mammary cell viability in dairy cows is still unknown. The purpose of this study was to determine: (1) effect of 5-HT on the viability of bovine mammary epithelial cells and its related signaling pathways, (2) interaction between prolactin (PRL) and 5-HT on the cell viability. The bovine mammary alveolar cell-T (MAC-T) were cultured with different concentrations of 5-HT for 12, 24, 48 or 72 hours, and then were assayed using cell counting kit-8, polymerase chain reaction (PCR) and immunobloting. The results suggested that 20 μM 5-HT treatment for 12 or 24 h promote cell viability, which was mainly induced by the activation of 5-HT receptor (5-HTR) 1B and 4, because the increase caused by 5-HT vanished when 5-HTR 1B and 4 was blocked by SB224289 and SB204070. And protein expression of mammalian target of rapamycin (mTOR), eukaryotic translation elongation factor 2 (eEF2), janus kinase 2 (JAK2) and signal transducer and activator of transcription 5 (STAT5) were decreased after blocking 5-HT 1B and 4 receptors. When MAC-T cells were treated with 5-HT and PRL simultaneously for 24 h, both the cell viability and the level of mTOR protein were significantly higher than that cultured with 5-HT or PRL alone. In conclusion, our study suggested that 5-HT promotes the viability of MAC-T cells by 5-HTR 1B and/or 4. Furthermore, there is a reciprocal relationship between PRL and 5-HT.