• Title/Summary/Keyword: Eugene

Search Result 299, Processing Time 0.032 seconds

Effect of Maca Supplementation on Scopolamine-Induced Memory Impairment of Mice (마카(Lepidium meyenii) 보충이 생쥐에서 Scopolamine으로 손상된 기억력 회복에 미치는 효과)

  • Lee, Hong-Mie;Park, Eun-Jin;Jeon, In-Sook;Kang, Yong-Soo;Jin, Dong-Il;Chung, Hai-Jung
    • The Korean Journal of Food And Nutrition
    • /
    • v.23 no.4
    • /
    • pp.485-491
    • /
    • 2010
  • With an increase in the number of people suffering from ageing-related diseases in our rapidly aging society, interests in natural products such as maca(Lepidium meyenii), which has properties of enhancing cognition and sexual performance, have increased. This study was conducted to assess the effects of 7 weeks of maca extract supplementation(0.5~2.0 g/kg BW) on scopolamine-induced amnesia in mice and on sperm count in male mice. All doses of maca supplementation significantly protected against scopolamine-induced amnesia as determined by a Morris water maze, but not according to passive avoidance tests. Maca supplementation did not affect acetylcholinesterase activity in the whole brain, nor the testicular sperm count of male mice. This study suggests that maca may have some neuroprotective properties in mice, which will be further examined by future studies.

An Experimental Study on the Influence of the Qualities of Ordinary Portland Cement on the Flowability of High Flow Concrete (보통 포틀랜드 시멘트 품질이 고유동 콘크리트의 유동 특성에 미치는 영향에 관한 연구)

  • Choi, Sung-Woo;Jo, Hyun-Tae;Ryu, Deug-Hyun;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2012
  • Recently, due to developments in construction technology, the use of high-performance concrete became popular. High-performance concrete when compared to the ordinary concrete can better satisfy required performances by using mineral admixture and superplasticizer. Various studies on the effect of admixture materials on the quality of high-performance concrete have been reported. But there exist limited number of reported results on the effect of cement qualities, which is the most important constituent material in concrete. Therefore, in this study, the relationship between the quality of cement and the flowability of high flowing concrete is investigated. Qualities of domestically produced cement were identified, and then the influence of the qualities of cement on the flowability of high flowing concrete is evaluated. The result showed that the dosage of required superplasticizer was dependent on cement fineness, to brain, free-CaO, and interstitial phase, which all trigger initial hydration process of cement. Particularly, the results showed that fineness of cement has a high impact on the dosage of the superplasticizer. For strength property of concrete, the dosage of superplasticizer had a significant effect on the early age strength, but had negligible effect in the long term strength.

The Experimental Study on the Heat Hydration Properties of Concrete According to Binder Conditions (결합재 조건에 따른 콘크리트의 수화발열 특성에 관한 연구)

  • Choi, Sung-Woo;Jo, Hyun-Tae;Ryu, Deuk-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.769-776
    • /
    • 2006
  • Recently, owing to the development of industry and the improvement of building techniques, concrete structures are becoming larger and higher. In hardening of these large connote structures, the heat of hydration gives rise to considerable thermal stress depending on the size and environmental condition of concrete, which might cause thermal cracking. Especially, the crack may cause severe damage to the safety and the durability of concrete structure. This study investigates the thermal properties of concrete according to several binder conditions, such as OPC, Belite rich cement(BRC), slag cement(SC), blast furnace slag(B) added cement fly ash(F) added cement and blast-furnace-slag and fly ash added cement. As a result of this study, the properly of concrete is most better BRC than others, and fly ash(25%) added cement and BFS(35%)-fly ash(15%) added cement gets superior effect in the control of heat hydration. But synthetically considered properties of concrete, workablity, strength heat hydration, etc, it is more effective to use mineral admixture. Especially, to be used Blast Furnace slag is more effective.

Properties of Ternary or Quaternary High Strength Concrete Using Silica Fume & Meta Kaolin (실리카퓸과 메타카올린을 사용한 다성분계 고강도콘크리트의 특성)

  • Park, Cho-Bum;Kim, Ho-Su;Jeon, Jun-Young;Kim, Eun-Kyum;Ryu, Deug-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.307-315
    • /
    • 2008
  • In this study, it is investigated the properties of high strength concrete using mineral admixture, on the purpose of use of meta kaolin for the substitutive materials to silica fume which is so expensive. The plain mixtures are 3 degrees which are ordinary portland cement, blast furnace slag cement and OPC included fly ash 20%, and silica fume and meta kaolin are substituted for the each plain mixtures in the range of 20%. The results of experiment showed as follows. In case of silica fume was only used, the viscosity and slump flow of fresh concrete were much decreased, on the contrary air content increased. But as usage of meta kaolin increased, to being increase the viscosity of fresh concrete, slump flow increased and air content and usage of super-plasticizer were decreased. Accordingly the workabilities of concrete were against tendency between silica fume and meta kaolin. The compressive strength, velocity of ultrasonic pulse and unit weight were increased according to usage of meta kaolin, the properties of hardened concrete were judged that they are affected with air content of fresh concrete, so it is very important to control air content of high strength concrete. Therefore, the use of meta kaolin is prospected to the substitutive material of silica fume, in case of using silica fume and meta kaolin, it is judged that the optimum usage of silica fume and meta kaolin is about 10% respectively, considering workability and strength of concrete.

Effects of different stocking density and various phytogenic feed additives dosage levels on growing-finishing pigs

  • Hyun Ah Cho;Min Ho Song;Ji Hwan Lee;Han Jin Oh;Yong Ju Kim;Jae Woo An;Se Yeon Chang;Young Bin Go;Dong Cheol Song;Seung Yeol Cho;Dong Jun Kim;Mi Suk Kim;Hae Ryoung Park;Hyeun Bum Kim;Jin Ho Cho
    • Journal of Animal Science and Technology
    • /
    • v.65 no.3
    • /
    • pp.535-549
    • /
    • 2023
  • This study was to investigate the effects of different phytogenic feed additives (PFA) dosage levels in growing- finishing pigs stressed by high stocking density. A total of 72 mix sexed 12 weeks growing pigs ([Landrace × Yorkshire] × Duroc) with initial body weight (BW) of 49.28 ± 4.58 kg were used for 8 weeks. There were 3 replicate pens in each treatment group, with 3 pigs per pen. The dietary treatment groups consisted of basal diets in animal welfare density (negative control [NC]), basal diet in high stocking density (positive control [PC]), PC + 0.04% essential oil (ES1), PC + 0.08% essential oil (ES2), PC + 0.10% bitter citrus extract & essential oil (CES1), PC + 0.20% bitter citrus extract & essential oil (CES2), PC + 0.05% grape pomace extract (GP1), PC + 0.10% grape pomace extract (GP2). The reduction of space allowance decreased (p < 0.05) average daily gain, feed efficiency, and digestibility of dry matter, crude protein, and gross energy. Also, the fecal score of PC groups increased (p < 0.05) compared with other groups. Basic behaviors (feed intake, standing, lying) were inactive (p < 0.05) and singularity behavior (biting) was increased (p < 0.10) under high stocking density. There was no difference in blood profile. However, the supplementation of PFA alleviated the negative effects such as reduced growth performance, nutrient digestibility, and some increasing stress indicators in th blood (cortisol) and animal behavior (biting). In conclusion, the negative effect of high stocking density was most effectively mitigated by the normal dosage of the mixture of bitter citrus extract and essential oil additive (CES1).

The Performance Evaluation of In-situ Carbonation Mortar Using Gaseous CO2 (기체 CO2를 사용한 In-situ 탄산화 모르타르 성능평가)

  • Changgun Park;Deukhyun Ryu;Seongwoo Choi;Kwangwoo Wi;Seungmin Lim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.226-233
    • /
    • 2023
  • In this study, two phases were conducted to investigate the direct injection of gaseous CO2 into cement mortar. The aim was to advance carbon capture, utilization, and storage (CCUS) technology by harnessing industrial waste CO2 from the domestic ready-mixed concrete industry. In the first phase, the factors influencing the physical properties of cement mortar when using gaseous CO2 were identified. This included a review of materials to achieve physical properties comparable to a reference formulation. As a result of this phase, it was confirmed that traditional approaches, such as adjusting the water-to-cement ratio, had limitations in achieving the desired physical properties. Consequently, the second phase focused on the optimization of CO2-injected mortar. This involved studying the CO2 application and mixing method for cement mortar. Changes in properties were observed when gaseous CO2 was injected into the mortar. The optimal injection quantity and time to enhance the compressive strength of mortar were determinded. As a result, this study indicated that an extra mixing time exceeding 120 seconds was necessary, compared to conventional mortar. The optimal CO2 injection rate was identified as 0.1 to 0.2 % by weight of cement, taking both flowability and compressive strength performance into account. Increasing the CO2 injection time did not further enhance strength. For this approach to be employed as a CCUS technology, additional studies are required, including a microstructural analysis evaluating the amount of immobilized CO2.

Treatment of the Herniated Nucleus Pulposus Syndrome by Chemonucleolysis with Chymopapain

  • Dabezies, Eugene J.
    • Journal of Biomedical Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.111-120
    • /
    • 1984
  • A new restoration method of chest X-ray image (dual project filter) was proposed to improve SNR (signal to noise ratio) characteristics. In this method, a priori information of system and anatomical structure and statistics of projected object are used in the design of filter. Dual projection filter varies its parameters, adapting to the local regions of chest(lungregion, mediasternum, subdiaphragm) and the structure of chest (bone, tissue, blood vessel, bronchia). The performance of Dual Projection Filter was 0.1-0.2dB better than Dual Sensor Wiener Filter, which was used for initial estimate of Dual Porjection Filter.

  • PDF