• Title/Summary/Keyword: Euclidean genetic distance

Search Result 33, Processing Time 0.034 seconds

Blind linear/nonlinear equalization for heavy noise-corrupted channels

  • Han, Soo- Whan;Park, Sung-Dae
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.383-391
    • /
    • 2009
  • In this paper, blind equalization using a modified Fuzzy C-Means algorithm with Gaussian Weights (MFCM_GW) is attempted to the heavy noise-corrupted channels. The proposed algorithm can deal with both of linear and nonlinear channels, because it searches for the optimal channel output states of a channel instead of estimating the channel parameters in a direct manner. In contrast to the common Euclidean distance in Fuzzy C-Means (FCM), the use of the Bayesian likelihood fitness function and the Gaussian weighted partition matrix is exploited in its search procedure. The selected channel states by MFCM_GW are always close to the optimal set of a channel even the additive white Gaussian noise (AWGN) is heavily corrupted in it. Simulation studies demonstrate that the performance of the proposed method is relatively superior to existing genetic algorithm (GA) and conventional FCM based methods in terms of accuracy and speed.

A Modified FCM for Nonlinear Blind Channel Equalization using RBF Networks

  • Han, Soo-Whan
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.1
    • /
    • pp.35-41
    • /
    • 2007
  • In this paper, a modified Fuzzy C-Means (MFCM) algorithm is presented for nonlinear blind channel equalization. The proposed MFCM searches the optimal channel output states of a nonlinear channel, based on the Bayesian likelihood fitness function instead of a conventional Euclidean distance measure. In its searching procedure, all of the possible desired channel states are constructed with the elements of estimated channel output states. The desired state with the maximum Bayesian fitness is selected and placed at the center of a Radial Basis Function (RBF) equalizer to reconstruct transmitted symbols. In the simulations, binary signals are generated at random with Gaussian noise. The performance of the proposed method is compared with that of a hybrid genetic algorithm (GA merged with simulated annealing (SA): GASA), and the relatively high accuracy and fast searching speed are achieved.

Bayesian Nonlinear Blind Channel Equalizer based on Gaussian Weighted MFCM

  • Han, Soo-Whan;Park, Sung-Dae;Lee, Jong-Keuk
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1625-1634
    • /
    • 2008
  • In this study, a modified Fuzzy C-Means algorithm with Gaussian weights (MFCM_GW) is presented for the problem of nonlinear blind channel equalization. The proposed algorithm searches for the optimal channel output states of a nonlinear channel based on received symbols. In contrast to conventional Euclidean distance in Fuzzy C-Means (FCM), the use of the Bayesian likelihood fitness function and the Gaussian weighted partition matrix is exploited in this method. In the search procedure, all possible sets of desired channel states are constructed by considering the combinations of estimated channel output states. The set of desired states characterized by the maxima] value of the Bayesian fitness is selected and updated by using the Gaussian weights. After this procedure, the Bayesian equalizer with the final desired states is implemented to reconstruct transmitted symbols. The performance of the proposed method is compared with those of a simplex genetic algorithm (GA), a hybrid genetic algorithm (GA merged with simulated annealing (SA):GASA), and a previously developed version of MFCM. In particular, a relative]y high accuracy and a fast search speed have been observed.

  • PDF

Partially Evaluated Genetic Algorithm based on Fuzzy Clustering (퍼지 클러스터링 기반의 국소평가 유전자 알고리즘)

  • Yoo Si-Ho;Cho Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.9
    • /
    • pp.1246-1257
    • /
    • 2004
  • To find an optimal solution with genetic algorithm, it is desirable to maintain the population sire as large as possible. In some cases, however, the cost to evaluate each individual is relatively high and it is difficult to maintain large population. To solve this problem we propose a novel genetic algorithm based on fuzzy clustering, which considerably reduces evaluation number without any significant loss of its performance by evaluating only one representative for each cluster. The fitness values of other individuals are estimated from the representative fitness values indirectly. We have used fuzzy c-means algorithm and distributed the fitness using membership matrix, since it is hard to distribute precise fitness values by hard clustering method to individuals which belong to multiple groups. Nine benchmark functions have been investigated and the results are compared to six hard clustering algorithms with Euclidean distance and Pearson correlation coefficients as fitness distribution method.

Path Search Method using Genetic Algorithm (유전자 알고리즘을 이용한 경로 탐색)

  • Kim, Kwang-Baek;Song, Doo-Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.6
    • /
    • pp.1251-1255
    • /
    • 2011
  • In this paper, we propose an optimal path search algorithm that contains all nodes using genetic algorithm. An object in this approach is formed as an equation related with the Euclidean distance between an intermediate node and the starting node and between an intermediate node and the goal node. Like other genetic algorithm structures, our algorithm defines a fitness function and selects a crossover spot node and a bitwise crossover point. A new node out of such operation survives only if it satisfies the fitness criteria and that node then becomes the starting node for the next generation. Repetition continues until no changes are made in the population. The efficiency of this proposed approach is verified in the experiment that it is better than two other contestants - sequential approach and the random approach.

The Variation of Needle Characteristics of Picea jezoensis(Siebold & Zucc.) Carriere Populations in Korea (한국산 가문비나무 자생집단의 침엽특성 변이)

  • Song, Jeong-Ho;Hur, Seong-Doo;Kang, Kyu-Suk;Yang, Byeung-Hoon;Lee, Jung-Joo
    • Korean Journal of Plant Resources
    • /
    • v.22 no.1
    • /
    • pp.31-36
    • /
    • 2009
  • The aim of this study was to examine geographic variation to support a genetic resource conservation plan of rare endemic Picea jezoensis (Siebold & Zucc.) Carriere. Three populations of P. jezoensis were analysed using multivariate analysis for 7 characteristics of needle morphology. In the morphological characters, seven characters of needle were 15.11 mm (needle length), 1.43 mm (needle width), 0.42 mm (needle thickness), 10.9 (length / width of needle), 3.6 (width / thickness of needle), 0.47 mm (Distance between resin duct and vascular), 17.4 ea. (number of stomata row), respectively. Nested analysis showed that were statistically significant differences among populations as well as among individuals within populations in 6 quantitative characters. In 5 of 7 characters, variance components among populations were higher than those among individuals within populations. Cluster analysis using complete linkage method showed two groups (Mt. Gyebang populations was genetically distinct from the other two populations) to Euclidean distance 0.4. Among principal components, primary 2 principal components appeared to be major variables because of the loading contribution of 100%.

Performance Improvement on MFCM for Nonlinear Blind Channel Equalization Using Gaussian Weights (가우시안 가중치를 이용한 비선형 블라인드 채널등화를 위한 MFCM의 성능개선)

  • Han, Soo-Whan;Park, Sung-Dae;Woo, Young-Woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.407-412
    • /
    • 2007
  • 본 논문에서는 비선형 블라인드 채널등화기의 구현을 위하여 가우시안 가중치(gaussian weights)를 이용한 개선된 퍼지 클러스터(Modified Fuzzy C-Means with Gaussian Weights: MFCM_GW) 알고리즘을 제안한다. 제안된 알고리즘은 기존 FCM 알고리즘의 유클리디언 거리(Euclidean distance) 값 대신 Bayesian Likelihood 목적함수(fitness function)와 가우시안 가중치가 적용된 멤버쉽 매트릭스(partition matrix)를 이용하여, 비선형 채널의 출력으로 수신된 데이터들로부터 최적의 채널 출력 상태 값(optimal channel output states)들을 직접 추정한다. 이렇게 추정된 채널 출력 상태 값들로 비선형 채널의 이상적 채널 상태(desired channel states) 벡터들을 구성하고, 이를 Radial Basis Function(RBF) 등화기의 중심(center)으로 활용함으로써 송신된 데이터 심볼을 찾아낸다. 실험에서는 무작위 이진 신호에 가우시안 잡음이 추가된 데이터를 사용하여 기존의 Simplex Genetic Algorithm(GA), 하이브리드 형태의 GASA(GA merged with simulated annealing (SA)), 그리고 과거에 발표되었던 MFCM 등과 그 성능을 비교 분석하였으며, 가우시안 가중치가 적용된 MFCM_GW를 이용한 채널등화기가 상대적으로 정확도와 속도 면에서 우수함을 보였다.

  • PDF

The Variation of Germination, Growth and Leaf Form of Open-Pollinated Progenies of Cornus kousa Buerger ex Miquel in Korea (산딸나무(Cornus kousa) 풍매차대(風媒次代)의 발아(發芽), 생장(生長)및 엽형(葉型) 변이(變異))

  • Song, Jeong-Ho;Goo, Young-Bon;Han, Sim-Hee;Yang, Byeung-Hoon;Park, Hyung-Soon
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.3
    • /
    • pp.261-267
    • /
    • 2006
  • A nursery trial comprising 109 progenies of 5 populations of Cornus kousa was analysed using multivariate analysis of 12 quantitative traits (growth and leaf form). The aim of this study was to examine geographic variation of the species based on the single, existing nursery trial to support a genetic resource conservation plan of Cornus kousa in Korea. Nested Anova showed that there were statistically significant differences among populations as well as among families within populations in all 12 quantitative traits. In 10 of 12 traits, variance components among families within populations were higher than those among populations. Cluster analysis using complete linkage method showed three groups to Euclidean distance 0.8. Among principal components, primary 2 principal components appeared to be major variables because of the loading contribution of 91.9%. The first contribution component was maximum width, vein number, blade length/petiole length and upper 1/3 width lower 1/3 width; the second one was height, diameter at root collar, blade length, upper 1/3 width, petiole length and petiole length/vein number, respectively. But all characters showed no significant difference with the pattern of geographic distribution.

A Study on Blind Nonlinear Channel Equalization using Modified Fuzzy C-Means (개선된 퍼지 클러스터 알고리즘을 이용한 블라인드 비선형 채널등화에 관한 연구)

  • Park, Sung-Dae;Han, Soo-Whan
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.10
    • /
    • pp.1284-1294
    • /
    • 2007
  • In this paper, a blind nonlinear channel equalization is implemented by using a Modified Fuzzy C-Means (MFCM) algorithm. The proposed MFCM searches the optimal channel output states of a nonlinear channel from the received symbols, based on the Bayesian likelihood fitness function instead of a conventional Euclidean distance measure. Next, the desired channel states of a nonlinear channel are constructed with the elements of estimated channel output states, and placed at the center of a Radial Basis Function (RBF) equalizer to reconstruct transmitted symbols. In the simulations, binary signals are generated at random with Gaussian noise. The performance of the proposed method is compared with that of a hybrid genetic algorithm (GA merged with simulated annealing (SA): GASA), and the relatively high accuracy and fast searching speed are achieved.

  • PDF

CLUSTERING DNA MICROARRAY DATA BY STOCHASTIC ALGORITHM

  • Shon, Ho-Sun;Kim, Sun-Shin;Wang, Ling;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.438-441
    • /
    • 2007
  • Recently, due to molecular biology and engineering technology, DNA microarray makes people watch thousands of genes and the state of variation from the tissue samples of living body. With DNA Microarray, it is possible to construct a genetic group that has similar expression patterns and grasp the progress and variation of gene. This paper practices Cluster Analysis which purposes the discovery of biological subgroup or class by using gene expression information. Hence, the purpose of this paper is to predict a new class which is unknown, open leukaemia data are used for the experiment, and MCL (Markov CLustering) algorithm is applied as an analysis method. The MCL algorithm is based on probability and graph flow theory. MCL simulates random walks on a graph using Markov matrices to determine the transition probabilities among nodes of the graph. If you look at closely to the method, first, MCL algorithm should be applied after getting the distance by using Euclidean distance, then inflation and diagonal factors which are tuning modulus should be tuned, and finally the threshold using the average of each column should be gotten to distinguish one class from another class. Our method has improved the accuracy through using the threshold, namely the average of each column. Our experimental result shows about 70% of accuracy in average compared to the class that is known before. Also, for the comparison evaluation to other algorithm, the proposed method compared to and analyzed SOM (Self-Organizing Map) clustering algorithm which is divided into neural network and hierarchical clustering. The method shows the better result when compared to hierarchical clustering. In further study, it should be studied whether there will be a similar result when the parameter of inflation gotten from our experiment is applied to other gene expression data. We are also trying to make a systematic method to improve the accuracy by regulating the factors mentioned above.

  • PDF