• 제목/요약/키워드: Euclidean genetic distance

검색결과 33건 처리시간 0.026초

Blind linear/nonlinear equalization for heavy noise-corrupted channels

  • Han, Soo- Whan;Park, Sung-Dae
    • Journal of information and communication convergence engineering
    • /
    • 제7권3호
    • /
    • pp.383-391
    • /
    • 2009
  • In this paper, blind equalization using a modified Fuzzy C-Means algorithm with Gaussian Weights (MFCM_GW) is attempted to the heavy noise-corrupted channels. The proposed algorithm can deal with both of linear and nonlinear channels, because it searches for the optimal channel output states of a channel instead of estimating the channel parameters in a direct manner. In contrast to the common Euclidean distance in Fuzzy C-Means (FCM), the use of the Bayesian likelihood fitness function and the Gaussian weighted partition matrix is exploited in its search procedure. The selected channel states by MFCM_GW are always close to the optimal set of a channel even the additive white Gaussian noise (AWGN) is heavily corrupted in it. Simulation studies demonstrate that the performance of the proposed method is relatively superior to existing genetic algorithm (GA) and conventional FCM based methods in terms of accuracy and speed.

A Modified FCM for Nonlinear Blind Channel Equalization using RBF Networks

  • Han, Soo-Whan
    • Journal of information and communication convergence engineering
    • /
    • 제5권1호
    • /
    • pp.35-41
    • /
    • 2007
  • In this paper, a modified Fuzzy C-Means (MFCM) algorithm is presented for nonlinear blind channel equalization. The proposed MFCM searches the optimal channel output states of a nonlinear channel, based on the Bayesian likelihood fitness function instead of a conventional Euclidean distance measure. In its searching procedure, all of the possible desired channel states are constructed with the elements of estimated channel output states. The desired state with the maximum Bayesian fitness is selected and placed at the center of a Radial Basis Function (RBF) equalizer to reconstruct transmitted symbols. In the simulations, binary signals are generated at random with Gaussian noise. The performance of the proposed method is compared with that of a hybrid genetic algorithm (GA merged with simulated annealing (SA): GASA), and the relatively high accuracy and fast searching speed are achieved.

Bayesian Nonlinear Blind Channel Equalizer based on Gaussian Weighted MFCM

  • Han, Soo-Whan;Park, Sung-Dae;Lee, Jong-Keuk
    • 한국멀티미디어학회논문지
    • /
    • 제11권12호
    • /
    • pp.1625-1634
    • /
    • 2008
  • In this study, a modified Fuzzy C-Means algorithm with Gaussian weights (MFCM_GW) is presented for the problem of nonlinear blind channel equalization. The proposed algorithm searches for the optimal channel output states of a nonlinear channel based on received symbols. In contrast to conventional Euclidean distance in Fuzzy C-Means (FCM), the use of the Bayesian likelihood fitness function and the Gaussian weighted partition matrix is exploited in this method. In the search procedure, all possible sets of desired channel states are constructed by considering the combinations of estimated channel output states. The set of desired states characterized by the maxima] value of the Bayesian fitness is selected and updated by using the Gaussian weights. After this procedure, the Bayesian equalizer with the final desired states is implemented to reconstruct transmitted symbols. The performance of the proposed method is compared with those of a simplex genetic algorithm (GA), a hybrid genetic algorithm (GA merged with simulated annealing (SA):GASA), and a previously developed version of MFCM. In particular, a relative]y high accuracy and a fast search speed have been observed.

  • PDF

퍼지 클러스터링 기반의 국소평가 유전자 알고리즘 (Partially Evaluated Genetic Algorithm based on Fuzzy Clustering)

  • 유시호;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권9호
    • /
    • pp.1246-1257
    • /
    • 2004
  • 유전자 알고리즘은 원하는 최적해를 찾기 위해서 개체 집단의 크기를 가능한 크게 유지하여야 한다. 하지만 실제 문제에서 개체의 적합도를 평가하는 것이 어려운 경우가 많기 때문에 큰 집단의 모든 개체에 대하여 적합도를 평가하는 것은 많은 시간과 비용을 요구한다. 이에 본 논문에서는 집단의 크기를 크게 유지하되 클러스터링에 의해 대표 개체만을 평가함으로써 효율을 높이는 퍼지 글러스터링 기반의 국소 평가 유전자 알고리즘을 제안한다. 나머지 개체들은 대표 개체로부터 간접적으로 적합도를 분배받는다. 다수의 집단에 소속되는 개체들의 경우, 하드 클러스터링 방법으로는 정확한 적합도 분배를 하기 어렵기 때문에 퍼지 c-means 알고리즘을 사용하였고, 클러스터 결과인 퍼지 소속 행렬에 의해 적합도를 배분하였다. 9개의 벤치마크 적합도 함수에 대하여 6가지 하드 클러스터링 알고리즘을 적용한 유클리디안 거리와 피어슨 상관계수에 의한 적합도 배분 방법과 본 논문에서 제안하는 방법을 비교 실천한 결과, 제안한 방법의 우수한 성능을 확인할 수 있었다.

유전자 알고리즘을 이용한 경로 탐색 (Path Search Method using Genetic Algorithm)

  • 김광백;송두헌
    • 한국정보통신학회논문지
    • /
    • 제15권6호
    • /
    • pp.1251-1255
    • /
    • 2011
  • 본 논문에서는 최적화 문제를 해결하는 기법의 하나인 유전자 알고리즘을 이용하여 모든 노드를 탐색하여 최적의 경로를 도출하는 최적화 경로 탐색 알고리즘을 제안한다. 경로를 도출하기 위해 중간 경로 노드로부터 출발지 노드 및 도착지 노드까지의 거리를 측정하여 개체를 생성한다. 출력 노드들을 도출하기 위해 생성된 개체를 적합도 함수에 적용하여 적합도를 계산한다. 계산된 적합도 값에 따라 교배를 할 노드 및 교배 지점(비트단위)을 선택한다. 선택된 노드와 교배 지점을 이용하여 개체들을 교배한다. 교배를 통해 새로운 개체를 생성한다. 새로운 개체가 적합도 조건에 만족하면 출력 노드로 도출하고, 다음 출력 노드를 도출할 때의 출발지 노드로 선택한다. 이러한 과정을 반복하여 모든 출력 노드를 도출한다. 제안된 방법을 실험한 결과, 순차 방식과 난수를 이용한 경우보다 제안된 방법이 효율적인 것을 확인하였다.

한국산 가문비나무 자생집단의 침엽특성 변이 (The Variation of Needle Characteristics of Picea jezoensis(Siebold & Zucc.) Carriere Populations in Korea)

  • 송정호;허성두;강규석;양병훈;이정주
    • 한국자원식물학회지
    • /
    • 제22권1호
    • /
    • pp.31-36
    • /
    • 2009
  • 가문비나무의 유전자원 보존 전략 수립을 위해 3개 집단의 지리적 위치에 따른 침엽의 7가지 형태적 특성에 대한 변이를 조사하고 다변량분석을 실시하였다. 침엽의 평균생장은 침엽길이 15.11 mm, 침엽폭 1.43 mm, 침엽두께 0.42mm, 침엽길이/폭 10.9, 침엽폭/두께 3.6, 유관속과 수지구와의 거리 0.47, 기공열수 17.4개로 나타났다. Nested 분산분석 결과 유관속과 수지구와의 거리 특성을 제외한 6가지 양적특성들에서 집단간 및 집단 내 개체 간에 유의적인 차이를 보였으며, 대부분의 형질들은 총 분산 가운데 집단 내 개체 간 보다는 집단간 차지하는 비율이 큰 것으로 나타났다. 7가지 양적특성들에 대한 집단간 유연관계는 거리지수 0.4에서 계방산집단이 지리산과 덕유산집단과는 별개의 상이한 그룹을 형성하였으며, 유집군의 유형은 제2주성분까지가 전체 변이의 100%를 설명하였다.

가우시안 가중치를 이용한 비선형 블라인드 채널등화를 위한 MFCM의 성능개선 (Performance Improvement on MFCM for Nonlinear Blind Channel Equalization Using Gaussian Weights)

  • 한수환;박성대;우영운
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 추계종합학술대회
    • /
    • pp.407-412
    • /
    • 2007
  • 본 논문에서는 비선형 블라인드 채널등화기의 구현을 위하여 가우시안 가중치(gaussian weights)를 이용한 개선된 퍼지 클러스터(Modified Fuzzy C-Means with Gaussian Weights: MFCM_GW) 알고리즘을 제안한다. 제안된 알고리즘은 기존 FCM 알고리즘의 유클리디언 거리(Euclidean distance) 값 대신 Bayesian Likelihood 목적함수(fitness function)와 가우시안 가중치가 적용된 멤버쉽 매트릭스(partition matrix)를 이용하여, 비선형 채널의 출력으로 수신된 데이터들로부터 최적의 채널 출력 상태 값(optimal channel output states)들을 직접 추정한다. 이렇게 추정된 채널 출력 상태 값들로 비선형 채널의 이상적 채널 상태(desired channel states) 벡터들을 구성하고, 이를 Radial Basis Function(RBF) 등화기의 중심(center)으로 활용함으로써 송신된 데이터 심볼을 찾아낸다. 실험에서는 무작위 이진 신호에 가우시안 잡음이 추가된 데이터를 사용하여 기존의 Simplex Genetic Algorithm(GA), 하이브리드 형태의 GASA(GA merged with simulated annealing (SA)), 그리고 과거에 발표되었던 MFCM 등과 그 성능을 비교 분석하였으며, 가우시안 가중치가 적용된 MFCM_GW를 이용한 채널등화기가 상대적으로 정확도와 속도 면에서 우수함을 보였다.

  • PDF

산딸나무(Cornus kousa) 풍매차대(風媒次代)의 발아(發芽), 생장(生長)및 엽형(葉型) 변이(變異) (The Variation of Germination, Growth and Leaf Form of Open-Pollinated Progenies of Cornus kousa Buerger ex Miquel in Korea)

  • 송정호;구영본;한심희;양병훈;박형순
    • 한국산림과학회지
    • /
    • 제95권3호
    • /
    • pp.261-267
    • /
    • 2006
  • 본 연구는 국내 자생 산딸나무 수종의 유전자원 보존 전략 수립을 위해 5개 집단의 지리적 위치에 따른 풍매차대 109가계의 포지에서 12가지 양적특성(생장 및 엽형) 변이를 조사하고 다변량분석을 실시하였다. Nested design에 의한 분산분석 결과 12가지 양적특성 모두에서 집단간 및 집단 내 가계 간에 유의적인 차이를 보였으며, 엽맥수와 상1/3폭 하1/3폭 특성은 총분산 가운데 집단이 차지하는 비율이, 다른 모든 형질들은 집단 내 가계가 차지하는 비율이 높은 것으로 나타났다. 12가지 양적특성들에 대한 집단간 유연관계는 거리지수 0.8에서 크게 3그룹으로 나뉘었으며, 유집군의 유형은 제2주성분까지가 전체 변이의 91.9%를 설명하였다. 각 인자별 기여도에 있어서는 제1주성분에서 최대엽폭, 엽맥수, 엽신/엽병길이 및 상1/3폭 하1/3폭 인자가, 제2주성분에서 수고, 근원경, 엽신, 상1/3폭, 엽병길이 및 엽병길이/엽맥수 인자가 높은 기여도를 나타냈다. 산딸나무 집단의 지리적 분포에 따른 경향은 나타나지 않았다.

개선된 퍼지 클러스터 알고리즘을 이용한 블라인드 비선형 채널등화에 관한 연구 (A Study on Blind Nonlinear Channel Equalization using Modified Fuzzy C-Means)

  • 박성대;한수환
    • 한국멀티미디어학회논문지
    • /
    • 제10권10호
    • /
    • pp.1284-1294
    • /
    • 2007
  • 본 논문에서는 개선된 퍼지 클러스터(Modified Fuzzy C-Means: MFCM) 알고리즘을 이용하여 블라인드 비선형 채널등화기를 구현하였다. 이를 위해 제안된 MFCM은 기존의 유클리디언 거리 값 대신 Bayesian Likelihood 목적함수(fitness function)를 이용하여 채널의 출력으로 수신된 데이터들로부터 비선형 채널의 최적의 채널 출력 상태 값(optimal channel output states)을 추정한다. 이렇게 구해진 채널 출력 상태 값들로 비선형 채널의 이상적 채널 상태(desired channel states) 벡터를 구성하고 이를 Radial Basis Function(RBF) 등화기의 중심(center)으로 활용하여 송신된 데이터 심볼을 찾아낸다. 실험에서는 무작위 이진 신호에 가우스 잡음을 추가한 데이터를 사용하여 하이브리드 유전자 알고리즘 (genetic algorithm(GA) merged with simulated annealing (SA): GASA)과 그 성능을 비교하였으며, 제안된 MFCM을 이용한 등화기가 GASA를 사용한 것 보다 상대적으로 정확도와 속도 면에서 우수함을 보였다.

  • PDF

CLUSTERING DNA MICROARRAY DATA BY STOCHASTIC ALGORITHM

  • Shon, Ho-Sun;Kim, Sun-Shin;Wang, Ling;Ryu, Keun-Ho
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.438-441
    • /
    • 2007
  • Recently, due to molecular biology and engineering technology, DNA microarray makes people watch thousands of genes and the state of variation from the tissue samples of living body. With DNA Microarray, it is possible to construct a genetic group that has similar expression patterns and grasp the progress and variation of gene. This paper practices Cluster Analysis which purposes the discovery of biological subgroup or class by using gene expression information. Hence, the purpose of this paper is to predict a new class which is unknown, open leukaemia data are used for the experiment, and MCL (Markov CLustering) algorithm is applied as an analysis method. The MCL algorithm is based on probability and graph flow theory. MCL simulates random walks on a graph using Markov matrices to determine the transition probabilities among nodes of the graph. If you look at closely to the method, first, MCL algorithm should be applied after getting the distance by using Euclidean distance, then inflation and diagonal factors which are tuning modulus should be tuned, and finally the threshold using the average of each column should be gotten to distinguish one class from another class. Our method has improved the accuracy through using the threshold, namely the average of each column. Our experimental result shows about 70% of accuracy in average compared to the class that is known before. Also, for the comparison evaluation to other algorithm, the proposed method compared to and analyzed SOM (Self-Organizing Map) clustering algorithm which is divided into neural network and hierarchical clustering. The method shows the better result when compared to hierarchical clustering. In further study, it should be studied whether there will be a similar result when the parameter of inflation gotten from our experiment is applied to other gene expression data. We are also trying to make a systematic method to improve the accuracy by regulating the factors mentioned above.

  • PDF