• Title/Summary/Keyword: Eu metal

Search Result 139, Processing Time 0.024 seconds

Recycling of Copper & Nickel in ASR to satisfy the EU ELV Directive (유럽연합 환경기준 충족을 위한 자동차폐기물 내의 구리와 니켈 재활용에 대한 연구)

  • Lee, Hyun-Chang;Park, Woo-Cheul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1729-1734
    • /
    • 2009
  • About 40 million automotive vehicles all over the world and 0.55 million in Korea were retired from use annually. Every nation is desperate to decrease environmental pollution by ELVs(End of Life Vehicles) and try to tighten the regulations. Europe passed laws requiring OEMs to increase vehicles' recovery and reuse rate to 95% by 2015 from current 84%. The ferrous parts, 75% of total automobile weight, are almost recycled whereas the remaining 25% of the non-metal -predominantly plastics as well as form, glass and rubber- and the non-ferrous materials -copper, nickel and aluminium- end up in landfills. The recycling status of non-ferrous materials represented by copper and nickel is reviewed and how much the recycling rate will be improved is calculated.

Numerical Study on Performance Evaluation of Impact Beam for Automotive Side-Door using Fiber Metal Laminate (자동차 측면 도어의 섬유금속적층판을 적용한 임펙트 빔의 수치해석에 의한 성능 평가)

  • Park, Eu-Tteum;Kim, Jeong;Kang, Beom-Soo;Song, Woo-Jin
    • Composites Research
    • /
    • v.30 no.2
    • /
    • pp.158-164
    • /
    • 2017
  • The fiber metal laminate is a type of hybrid materials laminated thin metallic sheets with fiber reinforced plastic sheets. The laminate has been researched or applied in automotive and aerospace industries due to their outstanding impact absorbing performance in view of light weight aspect. Specially, the replacement of side-impact beam as the fiber reinforced plastic has been researched actively. The objective of this paper is the primitive investigation in the development of side-door impact beam using the fiber metal laminate. First, the three-point bending simulations were conducted to decide the shape of impact beam using the numerical analysis. Next, two cases impact beam (pure DP 980 and fiber metal laminate) were installed in the side-door, and then the bending tests (according to FMVSS 214S) were simulated using the numerical analysis. It is noted that the side-door impact beam can be replaced with the fiber metal laminate sufficiently based on the numerical analysis results.

Base-metal Mineralization in the Cretaceous Gyeongsang Basin and Its Genetic Implications, Korea: the Haman-Gunbug-Goseong(-Changwon) and the Euiseong Metallogenic Provinces (한국 경상분지 백악기 비철금속 광화작용과 그 성인적 의의: 함안-군북-고성(-창원) 및 의성 광상구를 중심으로)

  • 이상렬;최선규;소칠섭;유인창;위수민;허철호
    • Economic and Environmental Geology
    • /
    • v.36 no.4
    • /
    • pp.257-268
    • /
    • 2003
  • The Cretaceous magmatism in the Gyeongsang Basin, Korea, led to the formation of two contrasting metallogenic provinces: the Haman-Gunbug-Goseong(-Changwon) (HGGC) and the Euiseong (EU). The mineralization in the HGGC metallogenic province represents copper, gold and iron of porphyry-related deposits that display close relationships in time and space with subvolcanic granitoids. Much of copper-gold-forming events in this province are consistently constrained to the period between ca. 89 and 81 Ma. The hydrothermal systems of copper-gold vein deposits in the HGGC province are associated with ore-forming fluids of high to intermediate temperature (300∼50$0^{\circ}C$) with high salinity (20∼55 equiv. wt. % NaCl). The ore-forming fluids become progressively more diluted by the incorporation of decreased quantities of magmatic water further from the nearby intrusion, suggesting significant input and fluid mixing of a meteoric water component to the magmatic fluids during the late stage of geothermal systems. In contrast, the EU metallogenic province is characterized by polymetallic vein deposits that are consistently constrained to a period of 78∼60 Ma. The geothermal systems of polymetallic vein deposits in the EU province are derived from a narrow range of intermediate temperature (200∼40$0^{\circ}C$) with relatively low salinity(1∼7 equiv. wt.% NaCl). It may represent a mixed fluid of magmatic and meteoric waters. The base-metal mineralization in the Gyeongsang Basin shows a close spatial and temporal distinction between the proximal environment derived from shallow-level granitoids in the southwestern HGGC province and the distal condition derived from volcanic environments in the northwestern EU province.

Development of a Simulation Program for the Li-Reduction Process of PWR Spent Fuel (PWR 사용후핵연료의 Li 환원과정 모사 프로그램 개발)

  • Lee, Yun-Hee;Shin, Hee-Sung;Jang, Ji-Woon;Kim, Ho-Dong;Yoon, Ji-Sup
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.4
    • /
    • pp.335-344
    • /
    • 2006
  • In this paper a computer program was developed, which simulates the Li reduction process of PWR spent fuel, and the amount of a produced metal or chloride compound was calculated at the various amount of Li with the program. It establishes a database, which is composed of some characteristics related to a chemical reaction equation and thermodynamic data, and it calculates the transformed rate of PWR spent fuel oxide at the certain amount of Li by using the database as input data. As the results of the performance test of the program, it was validated that the transformed values of oxides, except for $Eu_2O_3$ and $Sm_2O_3$, were almost the same to within about a 6 % error with those calculated by the previous code and that the calculated amount of Li was also exactly consistent with the theoretical one, which is used for a complete reaction of each oxide in a single chemical reaction. A relationship between Li and the transformed metal of each oxide was analyzed on the basis of the quantities calculated with the verified development program. Of the results, when the amount of Li was given to be 250 mole, the 83.73 percentage of $UO_2$ was transformed into U while the remainder was still to be $UO_2$. In addition, it was appeared that the 297 mole of Li was needed to completely convert $UO_2$ into U.

  • PDF

The Distribution of Heavy Metals in the Surface Waters and Sediments of Gaduk Channel in Jinhae Bay, Korea (진해만의 가덕수도 표층수와 표층 퇴적물 중의 중금속 분포)

  • Kim, Kyung-Tae;Kim, Eun-Soo;Cho, Sung-Rok;Kahng, Sung-Hyun;Kim, Jong-Kun;Park, Jun-Kun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.2
    • /
    • pp.95-103
    • /
    • 2008
  • Heavy metals in the surface seawaters and sediments were measured in Gaduk channel of jinhae Bay. The high concentrations of heavy metals in the seawaters were found at the stations near the islands. In the seawaters, the mean concentrations of dissolved heavy metals except for Pb were not higher than previous data in this bay. Higher heavy metal contents in the surface sediments were observed at the stations adjacent to the Geojedo or Gadukdo of the Gaduk channel. The contents of Co,Ni,Zn,Cu,As and Cd in the surface sediments showed relatively high correlation coefficients with IL and COD. The order of enrichment factors(EFs) of heavy metals in the sediments on the basis of average shale values was As>Cd>Pb>Zn>Co>Cu>Hg>Ni, and the EFs of As,Cd,Pb and Zn at whole stations were higher than 1. EFs of Ni and Zn on the basis of natural background concentration in Korean coastal sediments were lower than EFs by average shale.

  • PDF

Quantitative Analysis of Trace Metals in Lithium Molten Salt by ICP-AES (ICP-AES를 이용한 리튬 용융염내의 미량 금속성분원소 정량에 관한 연구)

  • Kim, Do-Yang;Pyo, Hyung-Yeal;Park, Yong-Joon;Park, Yang-Soon;Kim, Won-Ho
    • Analytical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.309-314
    • /
    • 2000
  • The quantitative analysis of various trace metals including fission products in lithium molten salts has been performed using a inductively coupled plasma atomic emission spectrometer (ICP-AES). The spectral interferences of lithium content, 500, 1,000 and 2,000 mg/L, in the sample solution were investigated using an optimum wavelength for the respective metal species. As a result, the line intensities for Y, Nd, Sr, and La had no influences from the lithium content up to 2,000 mg/L, while Mo, Ba, Ru, Pd, Rh, Zr and Ce showed spectral interferences of 10% to 50%. The group separation of metals from lithium in the molten salts solution was carried out by adding ammonia water into the solution. The recovery of Ru, Y, Rh, Zr, Nd, Ce, La and Eu was found to be over 90%, while Mo, Ba, Pd, and Sr provided low recovery percentages.

  • PDF

Mixed rare earth $(Nd_{1/3}Eu_{1/3}Gd_{1/3})Ba_2Cu_3O_{7-d}$ thin films by PLD (PLD법에 의한 혼합된 희토류계$(Nd_{1/3}Eu_{1/3}Gd_{1/3})Ba_2Cu_3O_{7-x}$ 고온 초전도 박막)

  • Ko, Rock-Kil;Bae, Sung-Hwan;Jung, Myung-Jin;Jang, Se-Hoon;Song, Kyu-Jeong;Park, Chan;Sohn, Myung-Hwan;Kang, Suk-Ill;Oh, Sang-Soo;Ha, Dong-Woo;Ha, Hong-Soo;Kim, Ho-Sup;Kim, Young-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.3-3
    • /
    • 2009
  • In order to investigate the possibility of using mixed rare earth $(Nd_{1/3}Eu_{1/3}Gd_{1/3})Ba_2Cu_3O_{7-x}$ (NEG123) as the superconducting layer of the HTS coated conductor, the NEG123 thin film was deposited epitaxialy on LAO(100) single crystal and IBAD_YSZ metal templates by pulsed laser deposition. Systematic studies were carried out to investigate the influences of deposition parameters of PLD on the micro structure, texture and superconducting properties of NEG-123 coated conductor. Deposition at oxygen partial pressure of 600 mTorr was needed to routinely obtain high quality NEG123 films with $J_c$'s (77K) over 2 MA/$cm^2$ and Tc's over 90K (${\Delta}T{\sim}2\;K$). We verified from magnetization study that the NEG123 has an improved in-field Jc as the field increases at temperatures between 10 K and 77 K compared with Gd123. The $J_c$ (77K, self field) and the value of onset $T_c$ of NEG123 thin film on LAO substrate was $4.0MA/cm^2$ and 92K, respectively. This is the first report, to the best of our knowledge, of coated conductors with NEG123 film as the superconducting layer which have Ic and Jc over 40 A/cm-width and 1.6 MA/$cm^2$ at 77K, self field. This study shows the possibility of using NEG123 film as the superconducting layer of the HTS coated conductor which can be used in high magnetic field power electric devices.

  • PDF

N- and P-doping of Transition Metal Dichalcogenide (TMD) using Artificially Designed DNA with Lanthanide and Metal Ions

  • Kang, Dong-Ho;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.292-292
    • /
    • 2016
  • Transition metal dichalcogenides (TMDs) with a two-dimensional layered structure have been considered highly promising materials for next-generation flexible, wearable, stretchable and transparent devices due to their unique physical, electrical and optical properties. Recent studies on TMD devices have focused on developing a suitable doping technique because precise control of the threshold voltage ($V_{TH}$) and the number of tightly-bound trions are required to achieve high performance electronic and optoelectronic devices, respectively. In particular, it is critical to develop an ultra-low level doping technique for the proper design and optimization of TMD-based devices because high level doping (about $10^{12}cm^{-2}$) causes TMD to act as a near-metallic layer. However, it is difficult to apply an ion implantation technique to TMD materials due to crystal damage that occurs during the implantation process. Although safe doping techniques have recently been developed, most of the previous TMD doping techniques presented very high doping levels of ${\sim}10^{12}cm^{-2}$. Recently, low-level n- and p-doping of TMD materials was achieved using cesium carbonate ($Cs_2CO_3$), octadecyltrichlorosilane (OTS), and M-DNA, but further studies are needed to reduce the doping level down to an intrinsic level. Here, we propose a novel DNA-based doping method on $MoS_2$ and $WSe_2$ films, which enables ultra-low n- and p-doping control and allows for proper adjustments in device performance. This is achieved by selecting and/or combining different types of divalent metal and trivalent lanthanide (Ln) ions on DNA nanostructures. The available n-doping range (${\Delta}n$) on the $MoS_2$ by Ln-DNA (DNA functionalized by trivalent Ln ions) is between $6{\times}10^9cm^{-2}$ and $2.6{\times}10^{10}cm^{-2}$, which is even lower than that provided by pristine DNA (${\sim}6.4{\times}10^{10}cm^{-2}$). The p-doping change (${\Delta}p$) on $WSe_2$ by Ln-DNA is adjusted between $-1.0{\times}10^{10}cm^{-2}$ and $-2.4{\times}10^{10}cm^{-2}$. In the case of Co-DNA (DNA functionalized by both divalent metal and trivalent Ln ions) doping where $Eu^{3+}$ or $Gd^{3+}$ ions were incorporated, a light p-doping phenomenon is observed on $MoS_2$ and $WSe_2$ (respectively, negative ${\Delta}n$ below $-9{\times}10^9cm^{-2}$ and positive ${\Delta}p$ above $1.4{\times}10^{10}cm^{-2}$) because the added $Cu^{2+}$ ions probably reduce the strength of negative charges in Ln-DNA. However, a light n-doping phenomenon (positive ${\Delta}n$ above $10^{10}cm^{-2}$ and negative ${\Delta}p$ below $-1.1{\times}10^{10}cm^{-2}$) occurs in the TMD devices doped by Co-DNA with $Tb^{3+}$ or $Er^{3+}$ ions. A significant (factor of ~5) increase in field-effect mobility is also observed on the $MoS_2$ and $WSe_2$ devices, which are, respectively, doped by $Tb^{3+}$-based Co-DNA (n-doping) and $Gd^{3+}$-based Co-DNA (p-doping), due to the reduction of effective electron and hole barrier heights after the doping. In terms of optoelectronic device performance (photoresponsivity and detectivity), the $Tb^{3+}$ or $Er^{3+}$-Co-DNA (n-doping) and the $Eu^{3+}$ or $Gd^{3+}$-Co-DNA (p-doping) improve the $MoS_2$ and $WSe_2$ photodetectors, respectively.

  • PDF

Heavy Metal Contents in Upland Soils and Crops of Korea (우리나라 밭 토양 및 작물의 중금속함량)

  • Jung, Goo-Bok;Kim, Ho-Chung;Jung, Ki-Yeol;Jung, Beung-Kan;Kim, Won-Il
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.3
    • /
    • pp.225-232
    • /
    • 1998
  • In order to monitor the degree of heavy metal distribution in upland cultivations in Korea, both the cultivated soils and crops were collected from the 854 and 140 sites, respectively. The contents of cadmium (Cd), copper(Cu), lead(Pb), and zinc(Zn) in each sample were measured by Inductively Coupled Plasma(ICP) technique after 1N-HCl extraction. The content of Arsenic(As) was also measured with the same technique after 1N-HCl extraction. The average contents of heavy metal in surface soils(0~15 cm depth) were $0.135mg\;kg^{-1}$ for Cd, $2.77mg\;kg^{-1}$ for Cu, $3.47mg\;kg^{-1}$ for Pb, $10.7mg\;kg^{-1}$ for Zn, and $0.57mg\;kg^{-1}$ for As. Heavy metal contents of soil were similar to those values measured for upland soils in 1989, lower than soils under plastic film house in 1996. However, these contents were lower than "Countermeasure values for soil contamination"(Cd: 4, Cu: 125, Pb: 300, and As: $15mg\;kg^{-1}$ in soil) describled in Soil Environmental Conservation Act in Korea(1996). The contents of heavy metal in fresh vegetable, and root and tuber crops ranged $0.005{\sim}0.019mg\;kg^{-1}$ for Cd, $0.20{\sim}1.03mg\;kg^{-1}$ for Cu, $0.042{\sim}0.104mg\;kg^{-1}$ for Pb, and $2.0{\sim}4.0mg\;kg^{-1}$ for Zn, respectively.

  • PDF

Evaluation of Fracture Behavior of Adhesive Layer in Fiber Metal Laminates using Cohesive Zone Models (응집영역모델을 이용한 섬유금속적층판 접착층의 모드 I, II 파괴 거동 물성평가)

  • Lee, Byoung-Eon;Park, Eu-Tteum;Ko, Dae-Cheol;Kang, Beom-Soo;Song, Woo-Jin
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.45-52
    • /
    • 2016
  • An understanding of the failure mechanisms of the adhesive layer is decisive in interpreting the performance of a particular adhesive joint because the delamination is one of the most common failure modes of the laminated composites such as the fiber metal laminates. The interface between different materials, which is the case between the metal and the composite layers in this study, can be loaded through a combination of fracture modes. All loads can be decomposed into peel stresses, perpendicular to the interface, and two in-plane shear stresses, leading to three basic fracture mode I, II and III. To determine the load causing the delamination growth, the energy release rate should be identified in corresponding criterion involving the critical energy release rate ($G_C$) of the material. The critical energy release rate based on these three modes will be $G_{IC}$, $G_{IIC}$ and $G_{IIIC}$. In this study, to evaluate the fracture behaviors in the fracture mode I and II of the adhesive layer in fiber metal laminates, the double cantilever beam and the end-notched flexure tests were performed using the reference adhesive joints. Furthermore, it is confirmed that the experimental results of the adhesive fracture toughness can be applied by the comparison with the finite element analysis using cohesive zone model.