• Title/Summary/Keyword: Ethephon

Search Result 83, Processing Time 0.025 seconds

Selection of Suitable Plant Growth Regulators for Augmenting Resistance to Waterlogging Stress in Soybean Plants (Glycine max L.) (콩 침수 스트레스에 대한 식물생장조절물질 처리 효과)

  • Seo, Chang-Woo;Lee, Seok-Min;Kang, Sang-Mo;Park, Yeon-Gyeong;Kim, Ah-Yeong;Park, Hyeon-Jin;Kim, Yoonha;Lee, In-Jung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.62 no.4
    • /
    • pp.325-332
    • /
    • 2017
  • This research was conducted to evaluate methods of enhancing the waterlogging resistance of soybean plant. Thus, we applied seven types of plant growth regulators (PGRs) to soybean plants and exposed them to waterlogged conditions for a total of 14 days. To evaluate stress resistance, we monitored plant growth characteristics data such as height, chlorophyll content, and chlorophyll fluorescence for 28 days after the initial waterlogging (14 days under waterlogging conditions and 14 days after waterlogging). According to the results, plant height was significantly increased by gibberellin A4 ($GA_4$) treatment compared to the control treatment and waterlogging-only treatment. However, we could not detect plant height owing to plant death when we applied abscisic acid (ABA). Except for $GA_4$ and ABA treatments, plant heights slightly decreased in all treatments compared to the waterlogging-only treatment. The chlorophyll content and chlorophyll fluorescence showed a similar tendency among PGR treatments. The chlorophyll content and chlorophyll fluorescence were significantly increased by ethephon and kinetin treatments 28 days after waterlogging compared to the waterlogging-only treatment. Consequently, kinetin and ethephon treatments induced more resistant phenotypes in soybean plants during or after exposure to waterlogging conditions.

A review on pesticide processing factors during processing of rice and barley based on CODEX (CODEX의 쌀과 보리에 대한 농약 가공계수 고찰)

  • Kim, Jeong-Ah;Im, Moo-Hyeog
    • Journal of Applied Biological Chemistry
    • /
    • v.62 no.3
    • /
    • pp.219-228
    • /
    • 2019
  • This study summarized processing factor (PF) by the stage of rice and barley processing based on JMPR reports from 2006 to 2016. We compared PF of 17 pesticides in rice products during the processing of rice grain, husked rice, polished rice, hulls, bran and cooked rice. Among the 17 pesticides, 12 pesticides except for 5 pesticides such as acephate, methamidophos, glufosinate, quinclorac and sulfoxaflor mostly decreased in pesticides when rice grain processed into brown rice. Pesticides tended to be partially reduced when processed from husked rice to polished rice. However, hulls and bran produced during the milling process were concentrated. Acephate and others, 5 pesticides are systemic pesticides, and pesticides are penetrated into foods, and a large amount of pesticides was not removed during the milling process. The remaining pesticide residues in polished rice were mostly removed after processing into cooked rice, and trace amounts of pesticide residues remained. In the comparison of 23 pesticides PF during the processing of barley products (pearl barley, flour, short, malt, beer, hulls and bran). Most of the pesticide except for 4 pesticide (ethephon, pyraclostrobin, penthiopyrad, sulfoxaflor), which are systemic pesticides, decreased during the process of pearl barley production out of the barley grain. The pesticide in the malt, which was made by steeping pearl barley was concentrated but when processed into beer, pesticide was remained only in trace amounts.

Modified Suppression Subtractive Hybridization Identifies an AP2-containing Protein Involved in Metal Responses in Physcomitrella patens

  • Cho, Sung Hyun;Hoang, Quoc Truong;Phee, Jeong Won;Kim, Yun Young;Shin, Hyun Young;Shin, Jeong Sheop
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.100-107
    • /
    • 2007
  • The moss Physcomitrella patens has two life cycles, filamentous protonema and leafy gametophore. A modified from of suppression subtractive hybridization (SSH), mirror orientation selection (MOS), was applied to screen genes differentially expressed in the P. patens protonema. Using reverse Northern blot analysis, differentially expressed clones were identified. The identified genes were involved mainly in metal binding and detoxification. One of these genes was an AP2 (APETALA2) domain-containing protein (PpACP1), which was highly up-regulated in the protonema. Alignment with other AP2/EREBPs (Ethylene Responsive Element Binding Proteins) revealed significant sequence homology of the deduced amino acid sequence in the AP2/EREBP DNA binding domain. Northern analysis under various stress conditions showed that PpACP1 was induced by ethephon, cadmium, copper, ABA, IAA, and cold. In addition, it was highly expressed in suspension-cultured protonema. We suggest that PpACP1 is involved in responses to metals, and that suspension culture enhance the expression of genes responding to metals.

Activation of Defense Responses in Chinese Cabbage by a Nonhost Pathogen, Pseudomonas syringae pv. tomato

  • Park, Yong-Soon;Jeon, Myeong-Hoon;Lee, Sung-Hee;Moon, Jee-Sook;Cha, Jae-Soon;Kim, Hak-Yong;Cho, Tae-Ju
    • BMB Reports
    • /
    • v.38 no.6
    • /
    • pp.748-754
    • /
    • 2005
  • Pseudomonas syringae pv. tomato (Pst) causes a bacterial speck disease in tomato and Arabidopsis. In Chinese cabbage, in which host-pathogen interactions are not well understood, Pst does not cause disease but rather elicits a hypersensitive response. Pst induces localized cell death and $H_2O_2$ accumulation, a typical hypersensitive response, in infiltrated cabbage leaves. Pre-inoculation with Pst was found to induce resistance to Erwinia carotovora subsp. carotovora, a pathogen that causes soft rot disease in Chinese cabbage. An examination of the expression profiles of 12 previously identified Pst-inducible genes revealed that the majority of these genes were activated by salicylic acid or BTH; however, expressions of the genes encoding PR4 and a class IV chitinase were induced by ethephon, an ethylene-releasing compound, but not by salicylic acid, BTH, or methyl jasmonate. This implies that Pst activates both salicylate-dependent and salicylate-independent defense responses in Chinese cabbage.

Identification and characterization of a rice blast fungal elicitor-inducible Oshin1 gene

  • Kim, Cha-Young;Lee, Sung-Ho
    • Journal of Plant Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.45-52
    • /
    • 2009
  • In order to understand the molecular interactions that occur between rice and the rice blast fungus during infection, we previously identified a number of rice blast fungal elicitor-responsive genes from rice (Oryza sativa cv. Milyang 117). Here, we report the cloning and characterization of the rice fungal elicitor-inducible gene Oshin1 (GenBank Accession Number AF039532). Sequence analysis revealed that the Oshin1 cDNA is 1067 bp long and contains an open reading frame encoding 205 amino acid residues. The Oshin1 gene shows considerable sequence similarity to the tobacco hin1 and hin2 genes. The predicted Oshin1 protein has a cysteine-rich domain at the N-terminus and is rich in leucine, serine, and alanine residues. Southern blot analysis suggests that Oshin1 gene is a member of a small gene family in the rice genome. To examine the expression of Oshin1, Northern blot analysis was conducted. Expression of the Oshin1 transcript is rapidly induced in suspension-cultured rice cells treated with fungal elicitor, salicylic acid or hydrogen peroxide. In addition, Oshin1 transcript levels are rapidly increased by treatment with $Ca^{2+}$/A23187. The expression of Oshin1 was also elevated in 3-week old leaf tissues upon ethephon application or fungal elicitor treatment. Our results suggest that the Oshin1 gene is involved in plant defense responses to environmental stresses.

Isolation and Differential Expression of an Acidic PR-1 cDNA Gene from Soybean Hypocotyls Infected with Phtophthora sojae f. sp. glycines

  • Kim, Choong-Seo;Yi, Seung-Youn;Lee, Yeon-Kyung;Hwang, Byung-Kook
    • The Plant Pathology Journal
    • /
    • v.16 no.1
    • /
    • pp.9-18
    • /
    • 2000
  • Using differential display techniques, a new acidic pathogenesis-related (PR) protein-1 cDNA (GMPRla) gene was isolated from a cDNA library of soybean (Glycinemax L.Merr, cultivar Jangyup) hypocotyls infected by Phytophthora sojae f. sp. glycines. The 741 bp of fulllength GMPRla clone contains an open reading frame of 525 nucleotides encoding 174 amino acid residues (pI 4.23) with a putative signal peptide of 27 amino acids in the N-terminus. Predicted molecular weight of the protein is 18,767 Da. The deduced amino acid sequence of GMPRla has a high level of identity with PR-1 proteins from Brassica napus, Nicotiana tabacum, and Sambucus nigra. The GMPRla mRNA was more strongly expressed in the incompatible than the compatible interaction. The transcript accumulation was induced in the soybbean hypocotyls by treatment with ethephon or DL-$\beta$-amino-n-butyric acid, but not by wounding. In situ hybridization data showed that GMPRIa mRNAs were usually localized in the vascular bundle of hypocotyl tissues, especially phloem tissue. Differences between compatible and incompatible interactions in the timing of GMPRla mRNA accumulation were remarkable, but the spatial distribution of GMPRla mRNA was similar in both interactions. However, more GMPRla mRNA was accumulated in soybean hypocotyls at 6 and 24 h after inoculation.

  • PDF

Inhibition of ethylene biosynthesis enhances embryogenesis of cultured microspores of Brassica napus

  • Leroux, Benoit;Carmoy, Nathalie;Giraudet, Delphine;Potin, Philippe;Larher, Francois;Bodin, Manuelle
    • Plant Biotechnology Reports
    • /
    • v.3 no.4
    • /
    • pp.347-353
    • /
    • 2009
  • Procedures that induce microspore embryogenesis have been described for a range of Brassica species, but embryo yield remains low for a number of genotypes. We have carried out experiments with the microspores from a weakly responsive line of B. napus to determine the culture conditions that optimize their in vitro embryogenesis by treating them with effectors of ethylene synthesis and action. The results revealed that isolated microspores subjected to an initial heat stress in a medium supplemented with inhibitors of ethylene synthesis such as AVG and $CoCl_2$ exhibited significantly increased embryo yields. This suggested that regulatory effects are exerted by the ethylene produced by the isolated microspores on the early processes of gametogenesis. As a consequence, treatment of microspores with SAM, an ethylene synthesis precursor, or with the ethylene-releasing agent ethephon, led to decreases in embryo yield. A special response to ethylene during the early stages of microspore development was finally shown to occur through experiments where isolated microspores were treated for increasing periods of time with $CoCl_2$. Collectively, our data demonstrated that the induction of embryogenesis induced by heat stress can be enhanced by inhibitors of ethylene biosynthesis.

CaWRKY2, a Chili Pepper Transcription Factor, Is Rapidly Induced by Incompatible Plant Pathogens

  • Oh, Sang-Keun;Yi, So Young;Yu, Seung Hun;Moon, Jae Sun;Park, Jeong Mee;Choi, Doil
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.58-64
    • /
    • 2006
  • WRKY family proteins are a class of plant-specific transcription factors involved in stress response signaling pathways. In this study a gene encoding a putative WRKY protein was isolated from a pepper EST database (http://genepool.kribb.re.kr). The cDNA, named Capsicum annuum WRKY2 (CaWRKY2), encodes a putative polypeptide of 548 amino acids, containing two WRKY domains with zinc finger motifs and two potential nuclear localization signals. Northern blot analyses showed that CaWRKY2 mRNA was preferentially induced during incompatible interactions of pepper plants with PMMoV, Pseudomonas syringae pv. syringae 61, and Xanthomonas axonopodis pv. vesicatoria race 3. Furthermore, CaWRKY2 transcripts were strongly induced by wounding and ethephon treatment, whereas only moderate expression was detected following treatment with salicylic acid and jasmonic acid. CaWRKY2 was translocated to the nucleus when a CaWRKY2-smGFP fusion construct was expressed in onion epidermal cells. CaWRKY2 also had transcriptional activation activity in yeast. Taken together our data suggest that CaWRKY2 is a pathogen-inducible transcription factor that may have a role in early defense responses to biotic and abiotic stresses.

Effects of Organic Fertilizer and Several Plant Growth Regulators on Yield Components and Quality of Tomato under the Plastic Film House Condition (유기질비료 및 수종의 성장조절제처리가 토마토 수량 구성요소 및 품질에 미치는 영향)

  • Shim, J-S;Kim, Y-C
    • The Journal of Natural Sciences
    • /
    • v.4
    • /
    • pp.161-177
    • /
    • 1991
  • This experiment was carrid out to investigate the effect of organic fertilizer and plant growth regulators application on the growth and quality of tomato. The results are summarized as follows. 1. Plant height of tomato was recorded highest when chemical fertilizer plus organic fertilizer was applied, and did not have significant effects in number of leaf. But stem diameter was positively effected by chemical plus organic fertilizer application than chemical fertilizer alone. 2. Flower formation, flower weight, anther weight and ovary weight were generally increased by organic fertilizer application. 3. Fruit-set and number of flower were significantly increased by organic fertilizer application. 4. Deformity fruit was the lowest rate at chemical plus organic fertilizer application when it was 14.7 percent, and it was increased by chemical fertilizer application. 5. Days of ripening was slightly delayed by organic fertilizer application and also flowering date shortened by chemical fertilizer application. 6. Plant growth regulators had positive effects on number of flower, flower weight, anther weight, and ovary weight, and variations of their effect by cluster were apparent. 7. Fruit-set was increased by 2,4-D 10ppm and BA 20ppm treatments but was decreased by treatments of Ethephon 10ppm and control. 8. By the BA 20ppm and 2,4-D 10ppm treatments, the rate of deformity fruit was decreased and fruit ripening date was also shortened.

  • PDF

Molecular Characterization of a PR4 Gene in Chinese Cabbage

  • Chung, Sam-Young;Lee, Kyung-Ah;Oh, Kyung-Jin;Cho, Tae-Ju
    • Animal cells and systems
    • /
    • v.9 no.4
    • /
    • pp.239-244
    • /
    • 2005
  • A cDNA clone for a wound- and pathogen-induced gene in Chinese cabbage (Brassica rapa subsp. pekinensis) was isolated and characterized. The cabbage gene, designated BrPR4, encodes a pathogenesis-related protein 4 (PR4) of 140 amino acids. The BrPR4 protein shows high similarity with wound-inducible antifungal proteins of tobacco, potato, barley, and wheat. The BrPR4 gene is locally induced by a nonhost pathogen, Pseudomonas syringae pv. tomato, that elicits a hypersensitive response in Chinese cabbage. Treatment of the cabbage leaves with benzothiadiazole (BTH), methyl jasmonate or ethephon showed that the BrPR4 gene expression is strongly induced by ethylene, but not by methyl jasmonate or BTH. The BrPR4 gene is also activated by wounding. Interestingly, however, the wound-inducible BrPR4 gene expression is repressed by salicylic acid or BTH, suggesting that there is cross-talk between salicylate-dependent and -independent signaling pathways.