• 제목/요약/키워드: Ethanol.

검색결과 9,343건 처리시간 0.039초

물과 에탄을 이성분 혼합용매 계에서 부피 및 온도 변화에 관한 연구 (A Study on the Change of Volume and Temperature in Aqueous Binary Solvent with Ethanol)

  • 김용권;임귀택
    • 한국초등과학교육학회지:초등과학교육
    • /
    • 제20권1호
    • /
    • pp.139-147
    • /
    • 2001
  • This paper is to study on the change of volume and temperature of the solution which mixed water with ethanol. And its main purpose is to examine closely how the volume changes, and to find the method to maximize the change of the volume. The summaries for results of the study are; First, we were known that water and ethanol are homogeneously mixed. But two solvents does not mix homogeneously by different specific gravity at early stages. Second, we could see that the volume changed large at homogeneous mixed water with ethanol by stirrer, the change of volume is the largest value when water mixed with ethanol in the ratio of one to one. Third, when water mixed with ethanol in the ratio of one to one, the change of temperature is very large by activated hydrogen bond. We conclude that it is the best result when ratio of water and ethanol is one to one and the solution is well mixed.

  • PDF

Ethanol이 allyl alcohol 독성에 미치는 영향

  • 이주영;정진호
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 춘계학술대회 and 제3회 신약개발 연구발표회
    • /
    • pp.323-323
    • /
    • 1994
  • Allyl alcohol은 간에서 두 단계의 효소 반응을 거쳐 대사되는데, 먼저, alcohol dehydrogenase (ADH)에 의해 독성 활성체인 acrolein으로 바뀌고, 이후 계속하여 aldehyde dehydrogenase (ALDH)에 의해 acrylic acid로 무독화되어 배설된다. Ethanol 역시 간에서 대사되는데 있어 같은 효소들을 공유하므로 allyl alcohol과 경쟁적으로 반응할 것이다. 따라서, 본 실험에서는 ethanol에 의한 대사 효소 경쟁반응에 의해 allyl alcohol 의 간독성이 어떻게 변화하는지를 연구하였다. 우선 ethanol과 allyl alcohol을 동시 투여할 경우 5시간째에 allyl alcohol에 의해 증가된 ALT level을 낮춘다는 보고를 확인하고자 ethanol 2 g/kg과 allyl alcohol 40 mg/kg을 동시투여했으나 오히려 치사율이 증가했고, ethanol을 2시간 전처리한 군에서도 역시 치사율이 증가되고, 간의 glutathione 양은 allyl alcohol 단독 처리군에 비해 현저히 감소되는 양상을 보였다.

  • PDF

에탄올+메탄 하이드레이트에 대한 분광학적 분석연구 (Spectroscopic Analysis of the Ethanol + Methane Hydrate)

  • 이종원;강성필
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.146.2-146.2
    • /
    • 2011
  • Molecular behaviors and crystal structures of the binary hydrates of $CH_4$ and ethanol were identified by means of 13C solid-state NMR and powder XRD methods at various concentrations of ethanol. In addition, NMR peak areas were used to calculate cage occupancies for both guest species. Obtained results showed that more $CH_4$ molecules are captured into hydrate phase per unit mass of ethanol molecules because $CH_4$ molecule can occupy sII large cages more, and pure $CH_4$ hydrate can form more as well at lower ethanol concentrations. Even though tuning phenomenon was already reported for some aqueous hydrate promoters such as THF, aqueous ethanol solutions are found to play the same tuning role in the binary clathrate hydrates in this study.

  • PDF

VOC물질중 에탄올 광분해반응을 위한 $TiO_2$촉매의 제초변수 고찰 (The Study on Preparation Parameters of $TiO_2$Catalyst for Photodecomposition of Ethanol as a VOC)

  • 이병용;김성욱;정석진
    • 한국대기환경학회지
    • /
    • 제17권4호
    • /
    • pp.363-370
    • /
    • 2001
  • In this study, TiO$_2$, the popular photocatalyst, was used to decompose ethanol. TiO$_2$was prepared by the sol -gel method and coated on pyrex stick. A 15W, UV-A lamp was used as the UV light source and il gas chromatography (HP 5890) was used to confirm the concentrations of ethanol, $CO_2$and the intermediates. Variation of preparation parameters and calcination temperature for TiO$_2$photocatalysts in the sol -gel method caused changes of ethanol decomposition activity. The best ethanol photodecomposition activity was obtained on the sample when prepared with 0.14 mol of HCI, a mol of ethanol and 1.3 mol of TTIP ware mixed in sol-gel process and calcinated at 50$0^{\circ}C$ for 3 hours. Acetaldehyde was detected as an intermediate and decomposed to carbon dioxide and water at the end of the reaction.

  • PDF

Effect of Oxygen and Unsaturated Fatty Acids on the Ethanol Tolerance of Yeast Strains

  • Ryu, Yeon-Woo;Jang, Heang-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • 제1권1호
    • /
    • pp.6-11
    • /
    • 1991
  • This study deals with investigation of the ethanol tolerance of yeast strains with respect to fatty acid composition and intracelluar ethanol concentration during alcohol fermentation. The cell viabilities and fermentation abilities of Saccharomyces cerevisiae and Kluyveromyces fragilis were improved by aeration and addition of unsaturated fatty acids into growth medium. Aeration decreases the accumulation of ethanol, while increases unsaturated fatty acid contents inside yeast cells. Thus it was found that oxygen and unsaturated fatty acids play decisive roles in the increase of ethanol tolerance of yeasts.

  • PDF

Ethanol의 면역독성에 대한 인삼엑기스의 영향 (Effect of Panax ginseng Extracts on the Immunotoxicity of Ethanol)

  • 안영근;김정훈;이병준
    • Environmental Analysis Health and Toxicology
    • /
    • 제3권3_4호
    • /
    • pp.29-37
    • /
    • 1988
  • Experiments were performed on mice to investigate the effect of panax ginseng extracts on the immunotoxicity of ethanol. Immune response were evaluated by antibody production, Arthus reaction, delayed type hypersensitivity (DTH), Rosette froming cell (RFC) and macrophage activity in mice, sensitized and challenged with sheep red blood cells. The weight of liver, spleen and thymus were measured. Following results obtained in this experiment. The exposure of ethanol decreased humoral and cellular immune response, the body weight and macrophage activity. Ginseng extracts such as ethanol extract, petroleum ether extract and n-butanol fraction were significantly increased the body weight. The administration of ginseng ethanol extract and ginseng petroleum ether extract were restored or increased humoral and cellular immune response. Macrophage activity was decreased by ethanol, but restored by the ginseng extracts.

  • PDF

Ethanol이 Allyl alcohol 독성에 미치는 영향 (Effect of Ethanol on Allyl alcohol-Induced Toxicity)

  • 이주영;김대병;문창규;정진호
    • 약학회지
    • /
    • 제38권2호
    • /
    • pp.107-113
    • /
    • 1994
  • Ally alcohol is metabolized in the liver through two steps, first to reactive acrolein by alcohol dehydrogenase(ADH), subsequently to acrylic acid by aldehyde dehydrogenase(ALDH). Since ethanol could compete the same enzymes to be metabolized in the liver, we have studied the interaction between allyl alcohol and ethanol on liver toxicity. Simultaneous treatment of 2 g/kg ethanol by ip administration with 40 mg/kg allyl alcohol to rats increased the lethality significantly, accompanied by potentiation of the loss of hepatic glutathione. Collectively, these findings suggested that ethanol potentiated the hepatotoxicity and lethality induced by allyl alcohol probably through competing two metabolizing enzymes, ADH and ALDH.

  • PDF

분위기 조건이 바이오디젤과 에탄올 혼합연료의 분무 거동 및 미립화 특성에 미치는 영향 (Effect of Ambient Conditions on the Spray Behavior and Atomization Characteristics of Biodiesel-ethanol Blended Fuels)

  • 박수한;김형준;서현규;전문수;이창식
    • 한국분무공학회지
    • /
    • 제13권4호
    • /
    • pp.180-186
    • /
    • 2008
  • The aim of this work is to investigate the effect of ambient conditions on the spray behavior of biodiesel-ethanol blended fuels. In order to analyze the spray behavior, spray tip penetration and spray cone angle were obtained from the visualization system and the effects of ethanol blending are compared macroscopic characteristics with the numerical results. It was reveled that the ethanol contents in biodiesel-ethanol blended fuels affect the spray tip penetration a little and increased the spray cone angle. Increased ambient pressure induced the decrease of the spray tip penetration, and the increased ambient temperature lead to the increase of the spray tip penetration. In addition, the increased ambient temperature promoted the vaporization and atomization of spray with the effect of increasing ethanol fuel.

  • PDF

Kinetic Models for Growth and Product Formation on Multiple Substrates

  • Kwon, Yun-Joong;Engler, Cady R.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제10권6호
    • /
    • pp.587-592
    • /
    • 2005
  • Hydrolyzates from lignocellulosic biomass contain a mixture of simple sugars; the predominant ones being glucose, cellobiose and xylose. The fermentation of such mixtures to ethanol or other chemicals requires an understanding of how each of these substrates is utilized. Candida lusitaniae can efficiently produce ethanol from both glucose and cellobiose and is an attractive organism for ethanol production. Experiments were performed to obtain kinetic data for ethanol production from glucose, cellobiose and xylose. Various combinations were tested in order to determine kinetic behavior with multiple carbon sources. Glucose was shown to repress the utilization of cellobiose and xylose. However, cellobiose and xylose were simultaneously utilized after glucose depletion. Maximum volumetric ethanol production rates were 0.56, 0.33, and 0.003 g/L h from glucose, cellobiose and xylose, respectively. A kinetic model based on cAMP mediated catabolite repression was developed. This model adequately described the growth and ethanol production from a mixture of sugars in a batch culture.

가솔린 기관의 에탄올혼합연료의 배출가스 특성에 관한 연구 (Emission Characteristics of a Gasoline Engine Using Ethanol Blended Fuel)

  • 조행묵;정동화
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.516-521
    • /
    • 2004
  • In this paper, the effects of ethanol blended gasoline on emissions and their catalytic conversion efficiencies characteristics were investigated in gasoline engine with an electronic fuel injection. The results showed that the increase of ethanol concentration in the blended fuels brought the reduction of THC and $CO_2$ emissions from the gasoline engine. THC emissions were drastically reduced up to thirty percent. And brake specific fuel consumption was increased. but brake specific energy consumption was similar level. However. unburned ethanol and acetaldehyde emissions increased. The conversion efficiency of Pt/Rh based three-way catalysts and the effect of ethanol on CO and NOx emissions were investigated by the change of engine speed. load and air/fuel ratio. Furthermore, the ethanol blended fuel results in the reduction effect of THC. CO and NOx emissions at idle speed.