The objective of this study was to find out the technical feasibility of ethanol-diesel fuel blends as a diesel engine fuel. Fuel properties essential to the proper operation of a diesel engine were determined for blends containing several concentrations of ethanol in No. 2 diesel fuel. A single-cylinder diesel engine for a power tiller was used for the engine tests, in which load, speed and fuel consumption rate were measured. The fuels used in tests were No. 2 diesel fuel and a blend containing 10-percent ethanol and 90-percent No. 2 diesel fuel. The results of the study are summarized as follows. 1. It was not possible to blend ethanol and No. 2 diesel fuel as a homogeneous solution even though anhydrous ethanol was used. The problem of blending ethanol in No. 2 diesel fuel could be solved by adding butanol about 5% of the amount of ethanol in the blends. 2. Because ethanol had a much lower boiling point ($78.3^{\circ}C$ under atmospheric pressure) than a diesel fuel, it was necessary to store ethanol-diesel fuel blends airtight in order to prevent them from evaporation losses of ethanol. 3. The addition of ethanol to No. 2 diesel fuel lowered the fuel viscosity and the cetane rating, but a blend of 10% ethanol and 90% diesel fuel had a viscosity and a cetane rating well above the KS minimum values for No. 2 diesel fuel. 4. At the rated speed, the specific fuel consumption of No.2 diesel fuel was lower than that of the 10% ethanol blend for the almost entire range of load. However, under the overload condition the specific fuel consumption was lower for the 10% ethanol blend. 5. Under the variable-speed full-load tests, both fuels produced approximately the same torque and power. At the speeds of 1600rpm or below, the specific fuel consumption of No. 2 diesel fuel was lower than that of the 10% ethanol blend. At the speeds of 1600rpm or above, however, the specific fuel consumption was lower for the 10% ethanol blend. 6. At the ambient temperature above $15^{\circ}C$, the use of the 10% ethanol blend in the engine created a vapor lock in the fuel injection pump and stalled the engine. The vapor locking problem was overcome by chilling the surroundings of the fuel injection pump and the cylinder head with water.
Phase separation and low cetane number are the main barriers to the large-scale use of ethanol-diesel blend fuel on small diesel engines. In this paper, an additive package is designed on the basis of the blended fuel properties to overcome these limitations. The experiments show that the solubility of ethanol in diesel is evidently increased by adding $1{\sim}2%$ (in volume) of the additive package and the flammability of ethanol-diesel blend fuel with the additive has reached the neat diesel level under the cold start conditions. Effects of the ethanol content in diesel on fuel economy, combustion characteristics, and emission characteristics are also investigated with the ethanol blend ratios of 10%, 20% and 30%. The increase in ethanol content shows that the specific fuel consumption and the brake thermal efficiency are both gradually increased compared to neat diesel. The soot concentrations of the three blended fuels are all greatly lower than that of neat diesel. $NO_x$ emission is increased with an increase in the engine load and is reduced with the increase in the ethanol blend ratio under a high load.
This review will be concentrated on the spray characteristics of bioethanol and its derived fuels such as ethanol-diesel, ethanol-biodiesel in compression ignition (CI) engines. The difficulty in meeting the severe limitations on NOx and PM emissions in CI engines has brought about many methods for the application of ethanol because ethanol diffusion flames in engine produce virtually no soot. The most popular method for the application of ethanol as a fuel in CI engines is the blending of ethanol with diesel. The physical properties of ethanol and its derivatives related to spray characteristics such as viscosity, density and surface tension are discussed. Viscosity and density of e-diesel and e-biodiesel generally are decreased with increase in ethanol content and temperature. More than 22% and 30% of ethanol addition would not satisfied the requirement of viscosity and density in EN 590, respectively. Investigation of neat ethanol sprays in CI engines was conducted by very few researchers. The effect of ambient temperature on liquid phase penetration is a controversial topic due to the opposite result between two studies. More researches are required for the spray characteristics of neat ethanol in CI engines. The ethanol blended fuels in CI engines can be classified into ethanol-diesel blend (e-diesel) and ethanol-biodiesel (e-biodiesel) blend. Even though dodecanol and n-butanol are rarely used, the addition of biodiesel as blend stabilizer is the prevailing method because it has the advantage of increasing the biofuel concentration in diesel fuel. Spray penetration and SMD of e-diesel and e-biodiesel decrease with increase in ethanol concentration, and in ambient pressure. However, spray angle is increased with increase in the ethanol percentage in e-diesel. As the ambient pressure increases, liquid phase penetration was decreased, but spray angle was increased in e-diesel. The increase in ambient temperature showed the slight effect on liquid phase penetration, but spray angle was decreased. A numerical study of micro-explosion concluded that the optimum composition of e-diesel binary mixture for micro-explosion was approximately E50D50, while that of e-biodiesel binary mixture was E30B70 due to the lower volatility of biodiesel. Adding less volatile biodiesel into the ternary mixture of ethanol-biodiesel-diesel can remarkably enhance micro-explosion. Addition of ethanol up to 20% in e-biodiesel showed no effect on spray penetration. However, increase of nozzle orifice diameter results in increase of spray penetration. The more study on liquid phase penetration and SMD in e-diesel and e-biodiesel is required.
Transactions of the Korean Society of Automotive Engineers
/
v.18
no.5
/
pp.76-84
/
2010
The aim of this study is to analyze the effect of the ethanol blending in diesel-ethanol blended fuels on the spray and combustion characteristics in a common-rail four-cylinder diesel engine. For the analysis of the spray characteristics, the spray images were obtained using a high speed camera with metal-halide lamps. From these spray images, the macroscopic spray characteristics such as the spray tip penetration and spray cone angle were investigated. Also, the combustion characteristics including the combustion pressure and the rate of heat release were studied with the analysis of the exhaust emissions in diesel-ethanol blended fuel driven diesel engine. It can be confirmed from the experiment on spray characteristics of diesel-ethanol blended fuels that the increased ethanol blending ratio induced the decrease of the spray tip penetration after the end of the injection. The spray cone angle slightly increased by the blending of ethanol fuel. In the experiment on atomization characteristics, the ethanol blending caused the improvement of the diesel atomization performance. On the other hand, at the same engine load condition, the increase of the ethanol blending ratio lead to lengthen the ignition delays, and to decrease the peak combustion pressure and the rate of heat release. Totally, the combustion and emission characteristics of ULSD and DE10 showed similar characteristics. However, in the case of DE20, CO and HC rapidly increased, and $NO_x$ decreased. It can be believed that 20% ethanol disturbed the combustion of diesel-ethanol blended fuel due to the low cetane number and evaporation.
This study described the effect of the multiple injections and diesel-ethanol on the NVH, combustion and emission characteristics of 4 cylinder common rail diesel engine. In order to investigate the influence of diesel-ethanol blended fuel in a light-duty common rail diesel engine, the injection strategy was varied with pilot injection, double pilot injections, and one main injection at various operating conditions. The results showed that diesel-ethanol blended fuel had longer ignition delay than that of the ultra low diesel fuel(ULSD). Also, in the case of multiple injections, the combustion pressure is increased smoothly near the TDC and the NVH are decreased. In the emission characteristics, diesel-ethanol blended fuel produced lower indicated specific nitrogen oxides(IS-NOX) and indicated specific Soot(IS-soot) emissions, however, indicated specific unburned hydrocarbon(IS-HC) and indicated specific carbon monoxide(IS-CO) emissions are slightly increased.
Transactions of the Korean Society of Automotive Engineers
/
v.18
no.3
/
pp.80-87
/
2010
The purpose of this paper is to analyze the effects of ethanol blending ratio and fuel temperature in diesel-ethanol blended fuel on the spray-atomization characteristics in a high pressure common-rail injection system. In this work, a diesel fuel and three blended fuels were used as test fuels. Blended fuels were made by blending ethanol with a purity 99.9% to diesel fuel, from 0% to 30%. In order to keep diesel-ethanol blending stability, 5% of biodiesel fuel as volumetric ratio was added into test fuels. The fuel temperature was controled in steps with 40K, from 290K to 370K. Macroscopic spray characteristics were investigated by analyzing the spray tip penetration and spray cone angle through spray images obtained from visualization system. In addition, in order to study microscopic spray characteristics of ethanol blended fuels, the droplet diameter, was analyzed using the droplet measuring system. It is revealed that the spray tip penetration is similar regardless of ethanol blending ratio. As ethanol blending ratio is increased, the spray cone angle becomes wider. It is shown that the spray cone angle is affected by low viscosity and density of ethanol. As the fuel temperature increases, the spray tip penetration and spray cone angle become shorter and narrower respectively. The SMD of ethanol blending fuels is smaller than that of diesel fuel because of low viscosity and surface tension of ethanol.
Alcohols are particularly attractive as alternative fuels because they are a renewable resource. This paper describes the performance and emission characteristics of ethanol and diesel blended fuels in a compression ignition engine. This experimental results showed that ethanol diesel blended fuels decreased the torque and brake mean effective pressure. And experimental results indicated that using ethanol-diesel blended fuel, smoke, CO and HC emissions decreased as a result of the ethanol addition.
Journal of the Korean Society of Fisheries and Ocean Technology
/
v.45
no.2
/
pp.114-121
/
2009
There are increased in using the bio-ethanol, as the carbon neutral attracts many researchers due to a reduction in carbon dioxide spotted as the global warming gas. A gasoline engine with 100% of the bioethanol was developed and used in Brazil already, but researches of using the bio-ethanol in diesel engines are lack. In this study, combustion tests with blend fuel of the gas oil and bio ethanol by 50% maximally due to a low cetane number of bio-ethanol were accomplished as a basic study of introduction of using the bioethanol in diesel engines. The result was that smoke emission was decreased with increase in proportion of the bio-ethanol, due to the increase of a amount of pre-mixed combustion with ignition delay. Although the amount of $CO_2$ is reduced according as the bio-ethanol is used(carbon neutral), the emission of $CO_2$ with increase in the proportion of the bio-ethanol was more increased due to lower a heat value of bio-ethanol than gas oil.
Kim, H.N.;Sung, Y.H.;Kim, T.J.;Choi, B.C.;Lim, M.T.;Suh, J.J.
Journal of Power System Engineering
/
v.12
no.1
/
pp.5-12
/
2008
We measured emission characteristics of CRDI diesel engine equipped with a commercial CPF. Experimental parameters adopted a neat diesel fuel, a blend of diesel fuel with 20% biodiesel, a blend of diesel fuel with 15% biodiesel and 5% ethanol. The experiments were carried out to measure the emission and engine performance according to ESC 13-mode cycles. The maximum torque with biodiesel blend fuel is slightly lower than that of neat diesel fuel in the entire the 13-mode cycles, and 5% ethanol and 15% biodiesel blend fuel is slightly higher than that of neat diesel fuel. THC and CO emissions of the biofuel blended diesel fuel were slightly increased and decreased, and mean conversion efficiencies of THC and CO on the commercial CPF were achieved about 70$\sim$87% in the ESC 13-mode. From the measurement by the Scanning Mobility Particle Sizer(SMPS), the total number and mass of nano-sized particles by a commercial CPF were decreased about 97.8% and 96.8 % in the range of the nano-size from 10.6 to 385nm, respectively.
Charoensaeng, Ampira;Khaodhiar, Sutha;Sabatini, David A.;Arpornpong, Noulkamol
Environmental Engineering Research
/
v.23
no.3
/
pp.242-249
/
2018
The use of palm oil and diesel blended with ethanol, known as a microemulsion biofuel, is gaining attention as an attractive renewable fuel for engines that may serve as a replacement for fossil-based fuels. The microemulsion biofuels can be formulated from the mixture of palm oil and diesel as the oil phase; ethanol as the polar phase; methyl oleate as the surfactant; alkanols as the cosurfactants. This study investigates the influence of the three cosurfactants on fuel consumption and exhaust gas emissions in a direct-injection (DI) diesel engine. The microemulsion biofuels along with neat diesel fuel, palm oil-diesel blends, and biodiesel-diesel blends were tested in a DI diesel engine at two engine loads without engine modification. The formulated microemulsion biofuels increased fuel consumption and gradually reduced the nitrogen oxides ($NO_x$) emissions and exhaust gas temperature; however, there was no significant difference in their carbon monoxide (CO) emissions when compared to those of diesel. Varying the carbon chain length of the cosurfactant demonstrated that the octanol-microemulsion fuel emitted lower CO and $NO_x$ emissions than the butanol- and decanol-microemulsion fuels. Thus, the microemulsion biofuels demonstrated competitive advantages as potential fuels for diesel engines because they reduced exhaust emissions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.