• Title/Summary/Keyword: Ethanol lavage

Search Result 8, Processing Time 0.018 seconds

Alcohol Ingestion Increases Lung Injury Induced by Cyclohexane (알코올 섭취 유무에 따른 cyclohexane의 폐 독성)

  • Kim, Byung-Ryul;Lee, Sang-Hee;Cho, Hyun-Gug
    • Applied Microscopy
    • /
    • v.35 no.2
    • /
    • pp.81-87
    • /
    • 2005
  • To evaluate the effects of ingestion of alcoholic drinks on the toxicities of industrial compounds, cyclohexane (CH) was intraperitoneally administrated to rats (1.56 g/kg body weght), which had been ingested 15% ethanol for up to 6 weeks, 4 times by once a day and every other day. Following the last treatment of ethanol or CH, blood and lung tissues were collected during 24 hours prior to sacrifice of animals. Comparing with the control group, the lung weight per body weight (%) and the protein content in bronchoalveolar lavage fluid were increased in the ethanol-pretreated group, and the glucose-6-phosphatase activity in lung tissues was decreased in the CH-treated group. In a morphological observations, pulmonary embolus were found in the CH-treated group, whereas a partial pulmonary atelectasis and a much increase in pulmonary embolus were shown in the CH-treated group after pretreated with ethanol for 6 weeks. In conclusion, these results indicate that ethanol pretreatment could enhance CH metabolism and that CH treatment with ethanol pretreatment could induce lung injury due to the increased CH metabolism.

Fermented red ginseng and ginsenoside Rd alleviate ovalbumin-induced allergic rhinitis in mice by suppressing IgE, interleukin-4, and interleukin-5 expression

  • Kim, Hye In;Kim, Jeon-Kyung;Kim, Jae-Young;Han, Myung Joo;Kim, Dong-Hyun
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.635-644
    • /
    • 2019
  • Background: To increase the pharmacological effects of red ginseng (RG, the steamed root of Panax ginseng Meyer), RG products modified by heat process or fermentation have been developed. However, the antiallergic effects of RG and modified/fermented RG have not been simultaneously examined. Therefore, we examined the allergic rhinitis (AR)-inhibitory effects of water-extracted RG (wRG), 50% ethanol-extracted RG (eRG), and bifidobacteria-fermented eRG (fRG) in vivo. Methods: RBL-2H3 cells were stimulated with phorbol 12-myristate-13-acetate/A23187. Mice with AR were prepared by treatment with ovalbumin. Allergic markers IgE, tumor necrosis factor-${\alpha}$, interleukin (IL)-4, and IL-5 were assayed in the blood, bronchoalveolar lavage fluid, nasal mucosa, and colon using enzyme-linked immunosorbent assay. Mast cells, eosinophils, and Th2 cell populations were assayed using a flow cytometer. Results: RG products potently inhibited IL-4 expression in phorbol 12-myristate-13-acetate/A23187-stimulated RBL-2H3 cells. Of tested RG products, fRG most potently inhibited IL-4 expression. RG products also alleviated ovalbumin-induced AR in mice. Of these, fRG most potently reduced nasal allergy symptoms and blood IgE levels. fRG treatment also reduced IL-4 and IL-5 levels in bronchoalveolar lavage fluid, nasal mucosa, and reduced mast cells, eosinophils, and Th2 cell populations. Furthermore, treatment with fRG reduced IL-4, IL-5, and IL-13 levels in the colon and restored ovalbumin-suppressed Bacteroidetes and Actinobacteria populations and ovalbumin-induced Firmicutes population in gut microbiota. Treatment with ginsenoside Rd significantly alleviated ovalbumin-induced AR in mice. Conclusion: fRG and ginsenoside Rd may alleviate AR by suppressing IgE, IL-4, IL-5, and IL-13 expression and restoring the composition of gut microbiota.

Phellinus linteus Extract Exerts Anti-asthmatic Effects by Suppressing NF-${\kappa}B$ and p38 MAPK Activity in an OVA-induced Mouse Model of Asthma

  • Yan, Guang Hai;Choi, Yun Ho
    • IMMUNE NETWORK
    • /
    • v.14 no.2
    • /
    • pp.107-115
    • /
    • 2014
  • Phellinus linteus has been used as a traditional herbal medicine in Asian countries and is known to have anti-tumor, immunomodulatory, anti-inflammatory, and anti-allergic activities. However, the protective effects of P. linteus against experimental asthma have not been fully investigated. The objective of this study was to determine whether P. linteus ethanol extract (PLE) suppresses inflammatory response in an OVA-induced asthma model. As expected, the oral administration of PLE significantly inhibited eosinophilic airway inflammation and airway hyperresponsiveness in OVA-challenged BALB/c mice. Supporting these data, the augmentation of Th2 cytokines (IL-4, IL-5, and IL-13), eotaxin, and adhesion molecules in lung tissues and bronchoalveolar lavage fluid after OVA inhalation was markedly attenuated by PLE. Furthermore, PLE reduced OVA-induced activation of NF-${\kappa}B$ and p38 MAPK in lung tissues. Therefore, our results suggest the potential of P. linteus as a therapeutic agent for asthma.

Mucolytic Effects of Various Parts of FRUCTUS BENINCASAE Extracts in the Rat Trachea (백동과(白冬瓜)와 청동과(靑冬瓜)의 부위별(部位別) 추출물(抽出物)에 의(依)한 거담효과(祛痰效果)의 비교연구(比較硏究))

  • Kim, Yu-Jin;Shin, Min-Kyo
    • The Journal of Korean Medicine
    • /
    • v.20 no.2
    • /
    • pp.165-176
    • /
    • 1999
  • The in vivo effects of Fructus Benincasae (FB-Baekdongkwa(B) and FB- on the expectoration (decrease in sputum viscoelasticity) by their sorts and using rats (Sp. D. male, $150{\sim}160g$). FB was divided by seed, flesh, and bark, extracted by 95% ethanol for 3 hr. The extracts were given to rats administration and the following results were obtained: 1. When FB Recens-C extract was administered at the concentration of 300 mg/kg b.w., mucus secretion effect in the trachea was desirably stimulated. 2. The secretion of phenol red was increased in the FB-treated tracheas in the order of Semen Benincasae(SB)-B $(153{\pm}8\;%)$, FB-B $(149{\pm}10\;%)$, and FBR-C $(117{\pm}26\;%)$. In general, the effect of FB-B extract on phenol red secretion was stronger than that of FB-C. 3. When tracheobronchial lavage fluid was analyzed, the mucus secretion was relatively high $(111{\pm}14\;%)$ in FB-B compared with other extracts. 4. Microscopic analysis after direct treatment of the FB extracts to the rat tracheal tissue showed that all the FB extracts possessed no effects for the activity of the ciliary movement. 5. Glycoprotein content secreted by the seed extract of FB-B was increased compared with the control group, which represents the highest secretion effect of mucus. From the above results. we could conclude that the seed of SB-B possesses better activity for mucus secretion from trachea than the extracts of any other parts. Therefore, it is expected that the seed of SB-B may be available for the purpose of expectorant activity in the prescription of traditional medicine.

  • PDF

Protective Effects of the Ethanol Extract of Viola tianshanica Maxim against Acute Lung Injury Induced by Lipopolysaccharides in Mice

  • Wang, Xue;Yang, Qiao-Li;Shi, Yu-Zhu;Hou, Bi-Yu;Yang, Sheng-Qian;Huang, Hua;Zhang, Li;Du, Guan-Hua
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1628-1638
    • /
    • 2017
  • Viola tianshanica Maxim, belonging to the Violaceae plant family, is traditionally used in Uighur medicine for treating pneumonia, headache, and fever. There is, however, a lack of basic understanding of its pharmacological activities. This study was designed to observe the effects of the ethanol extract (TSM) from Viola tianshanica Maxim on the inflammation response in acute lung injury (ALI) induced by LPS and the possible underlying mechanisms. We found that TSM (200 and 500 mg/kg) significantly decreased inflammatory cytokine production and the number of inflammatory cells, including macrophages and neutrophils, in bronchoalveolar lavage fluid. TSM also markedly inhibited the lung wet-to-dry ratio and alleviated pathological changes in lung tissues. In vitro, after TSM ($12.5-100{\mu}g/ml$) treatment to RAW 264.7 cells for 1 h, LPS ($1{\mu}g/ml$) was added and the cells were further incubated for 24 h. TSM dose-dependently inhibited the levels of proinflammatory cytokines, such as NO, $PGE_2$, $TNF-{\alpha}$, IL-6, and $IL-1{\beta}$, and remarkably decreased the protein and mRNA expression of $TNF-{\alpha}$ and IL-6 in LPS-stimulated RAW 264.7 cells. TSM also suppressed protein expression of $p-I{\kappa}Ba$ and p-ERK1/2 and blocked nuclear translocation of $NF-{\kappa}B$ p65. The results indicate that TSM exerts anti-inflammatory effects related with inhibition on $NF-{\kappa}B$ and MAPK (p-ERK1/2) signaling pathways. In conclusion, our data demonstrate that TSM might be a potential agent for the treatment of ALI.

Effect of Acute Ethanol Intoxication on the Pulmonary Compliance and Surfactant in Rats (급성(急性) Ethyl 알콜 중독(中毒) 흰쥐의 폐용압률(肺容壓率)과 폐포활성물질(肺胞活性物質)의 변화(變化))

  • Lee, Seung-Jung;Choo, Young-Eun
    • The Korean Journal of Physiology
    • /
    • v.15 no.1
    • /
    • pp.27-36
    • /
    • 1981
  • Relatively little has been done on the metabolic changes of the lung produced by the excessive alcohol ingestion to the point of the acute alcohol intoxication. In the present study, an effort was made to clarify the possible changes of the pulmonary surfactant system by the acute alcohol ingestion. The dynamic pulmonary compliance and the levels of protein and inorganic phosphorus (Pi) of both lung lavage and extract were chosen as the parameters of the pulmonary surfactant activities. The albino rats of both sexes were used, and 1.5 ml of 50% ethanol per 100 g body weight was given by oral intubation, and the experiment was performed at 1, 3, 6, 12, and 24 hours after the alcohol ingestion. The rat was sacrificed by cutting the carotid arteries, and blood sample for the determination of hematocrit(Hct) and the blood alcohol concentration was obtained. Both lungs were completely removed without dammage to the lung tissue, and the pulmonary compliance was measured by the changes of pressure-volume(P-V) curves by inflating or deflating the lung with air. Immediately after the P-V curves were recorded, the lung lavage was obtained by washing the lobes with 15ml of isotonic saline 3 times with a syringe. Next, total lungs were homogenized and filtered to obtain the lung extract. The protein and Pi levels were measured using the lung lavage and extract as the samples, and the lung/body weight ratio(L/B ratio) was also calculated. The results thus obtained were compared with the normal values and summarized as follows. The blood alcohol concentration reached the highest level of $0.71{\pm}0.02\;g\;%$ at 1 hr and gradually decreased until 24 hrs$(0.36{\pm}0.02\;g%)$ after the alcohol ingestion, but all the experimental groups showed significant increase comparing with the normal. The highest Hct value was obtained at 1hr$(64.86{\pm}2.45%)$ and significantly elevated value was continued throughout the experiment. The L/B ratio was significantly lowered from 3hrs until 24hrs after the alcohol ingestion but from 6 th hr on, a generally elevated value was observed with a significant value at 12 hrs and gradual recovery to the normal value at 24 hrs after the alcohol ingestion. The pulmonary compliance at inflation and deflation did not change appreciablly from the normal until 3 hrs after the alcohol ingestion but from 6 th hr on, a generally elevated value was observed with a significant value at 12 hrs and gradual recovery to the normal value at 24 hrs after the alcohol ingestion. The protein level of the lung lavage stowed a significantly increased value of $12.36{\pm}0.35\;mg/gm(3rd hr)$, $12.70{\pm}0.74\;mg/gm(12 th hr)$, and $12.65{\pm}0.88\;mg/gm(24 th hr)$, respectively, comparing with the normal value of $10.65{\pm}0.62\;mg/gm$, and the Pi level also showed a similar tendency of significant increase at 12th hr $(7.65{\pm}0.63\;{\mu}mol/gm)$ and 24 th hr$(6.70{\pm}0.36\;{\mu}mol/gm)$ comparing with the normal value of $5.32{\pm}0.20\;{\mu}mol/gm$. The protein level of the lung extract in the alcohol group was generally similar to the normal value with a slight decrease at 1st and 3 rd hr, tut the Pi level of the lung extract was generally increased in the alcohol group, and a significant increase was observed at 6 th hr$(17.77{\pm}1.54\;{\mu}mol/gm)$, 12 th hr$(13.92{\pm}0.78\;{\mu}mol/gm)$ and 24 th hr$(14.57{\pm}0.53\;{\mu}mol/gm)$ of the alcohol ingestion comparing with the normal value of $10.34{\pm}0.37\;{\mu}mol/gm$. From the above, it may be concluded that the acute alcohol intoxication produces the metabolic changes of the lungs by the increased surfactant activities and elevated pulmonary compliance.

  • PDF

Anti-asthmatic Activities of the Extract of Lonicera japonica (인동 추출물의 항천식 효과)

  • Ryu, Keun-Ho;Han, Chang-Kyun;Rhee, Hae-In;Kim, Taek-Soo;Jung, In-Ho;Lee, Sung-Jae;Im, Guang-Jin;Lee, Kang-Jin;Jeong, Ki-Won;Kim, Dae-Kee;Kim, Key-H.;Cho, Yong-Baik
    • Korean Journal of Pharmacognosy
    • /
    • v.30 no.4
    • /
    • pp.377-383
    • /
    • 1999
  • The anti-asthmatic activities of the extract of Lonicera japonica (BuOH fraction) and its mode of action were investigated using several in vitro and in vivo models. Lonicera japonica was extracted with 30% ethanol (v/v) and successively partitioned into BuOH. The BuOH fraction reduced antigen-induced contraction of isolated trachea from sensitized guinea pigs in a concentration-dependent manner. The BuOH fraction also inhibited histamine release from rat peritoneal mast cells induced by antigen or calcium ionophore A23187 ($IC_{50}=0.26$ and 0.32mg/ml, respectively). Eosinophil infiltration into bronchoalveolar lavage fluids induced by aeroallergen challenge in passively sensitized guinea pigs was inhibited by the BuOH fraction at a dose of 800mg/kg (51.7%). In addition, the BuOH fraction inhibited leukotriene $B_4$ prodution in rat basophilic leukemia cells ($IC_{50}=0.42\;mg/ml$) as well as phosphodiesterase 4 (PDE4) isolated from rat brain ($IC_{50}=0.015\;mg/ml$). All results from this study strongly suggest that the BuOH fraction of Lonicera japonica may be useful in the treatment of asthma and its mode of action may be related with inhibition of both 5-lipoxygenase and PDE4 enzyme.

  • PDF

The Anti-Inflammatory Effect of Trichilia martiana C. DC. in the Lipopolysaccharide-Stimulated Inflammatory Response in Macrophages and Airway Epithelial Cells and in LPS-Challenged Mice

  • Park, Ji-Won;Ryu, Hyung Won;Ahn, Hye In;Min, Jae-Hong;Kim, Seong-Man;Kim, Min-Gu;Kwon, Ok-Kyoung;Hwang, Daseul;Kim, Soo-Yong;Choi, Sangho;Zamora, Nelson;Rosales, Kattia;Oh, Sei-Ryang;Lee, Jae-Won;Ahn, Kyung-Seop
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.11
    • /
    • pp.1614-1625
    • /
    • 2020
  • A number of species of the genus Trichilia (Meliaceae) exhibit anti-inflammatory effects. However, the effect of Trichilia martiana C. DC. (TM) on lipopolysaccharide (LPS)-induced inflammation has not, to the best of our knowledge, yet been determined. Therefore, in the present study, the antiinflammatory effect of TM on LPS-stimulated RAW264.7 macrophages was evaluated. The ethanol extract of TM (TMEE) significantly inhibited LPS-induced nitric oxide (NO), prostaglandin 2 (PGE2), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). TMEE also reduced the levels of inflammatory cytokines, including tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β and IL-6. The upregulation of mitogen-activated protein kinases (MAPKs) and NF-κB activation was revealed to be downregulated following TMEE pretreatment. Furthermore, TMEE was indicated to lead to the nucleus translocation of nuclear factor erythroid-derived 2-related factor 2 (Nrf2) and the expression of heme oxygenase-1 (HO-1). In H292 airway epithelial cells, the pretreatment of TMEE significantly downregulated the production of LPS-stimulated IL-1β, and TMEE was indicated to increase the expression of HO-1. In animal models exhibiting LPS-induced acute lung injury (ALI), treatment with TMEE reduced the levels of macrophages influx and TNF-α production in the bronchoalveolar lavage fluid (BALF) of ALI mice. Additionally, TMEE significantly downregulated the activation of ERK, JNK and IκB, and upregulated the expression of HO-1 in the lungs of ALI mice. In conclusion, the results of the current study demonstrated that TMEE could exert a regulatory role in the prevention or treatment of the endotoxin-mediated inflammatory response.