• Title/Summary/Keyword: Ethanol fermentation

Search Result 907, Processing Time 0.029 seconds

Application of Thermotolerant Yeast at High Temperature in Jar-fermentor Scale.

  • Sohn, Ho-Yong;Kim, Young-Ho;Rhee, In-Koo
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.316-321
    • /
    • 1994
  • We investigated the possibility of industrial application and economit process of high temperature fermentation by thermotolerant alcohol producing yeasts as previously reported. From the 20% glucose media, the RA-74-2 produced 11.8% (v/v) ethanol at $32^{\circ}C$ (0.5% inoculum) and 10.6% (v/v) ethanol at $40^{\circ}C$ (3% inoculum), respectively. Also, 11.3% (v/v) ethanol was produced for 96 hours in the temperature-gradient fermentation. These results suggest that the RA-74-2 could isuccessfully be applied to save the cooling water and energy in industrial scale without re-investment or modification of established fermentation systems. When potato starch was used as the substrate for the RA-74-2, high temperature fermentation above $40^{\circ}C$ was more appropriate for industrial utilization because organic nitrogen was not necessary to economical fermentation. As the naked barley media just prior to industrial inoculation, taken from the Poongkuk alcohol industry Co., were used, 9.6% (v/v) ethanol was produced at $40^{\circ}C$ for 48 hours in jar-fermentor scale (actually, 9.5-9.8% (v/v) ethanol was produced at 30~$32^{\circ}C$ for 100 hours in industrial scale). The ethanol productivity was increased by the high glucoamylase activity as well as the high metabolic ratio at $40^{\circ}C$ Therefore, if the thermotolerant yeast RA-74-2 would be used in industrial scale, we could obtain a high productivity and saving of the cooling water and energy. Meanwhile, the RA-912 produced 6%(v/v) ethanol in 10% glucose media at $45^{\circ}C$ and showed the less ethanol-tolerance compared with industrial strains. As the produced alcohol was recovered by the vacuum evaporator at $45^{\circ}C$ in 15% glucose media, the final fermentation ratio was enhanced (76% of theoretical yields). This suggest that a hyperproductive process could be achieved by a continuous input of the substrate and continuous recovery of the product under vacuum in high cell-density culture.

  • PDF

Studies on the Thermophilic Yeast for Ethanol Fermentation (고온성(高溫性) 효모(酵母)에 의(依)한 Ethanol 발효(醱酵))

  • Shin, Cheol Seung;Park, Yoon Joong
    • Korean Journal of Agricultural Science
    • /
    • v.11 no.1
    • /
    • pp.25-33
    • /
    • 1984
  • This experiment carried out to obtain the thermophilic yeast, suitable for ethanol fermentation, and two usable strain were isolated. And microbial characteristics of these strains were investigated, and ethanol fermentation tested. The results obtained were as follows; 1. The selected yeasts were identified D-71 with Saccharomyces cerevisiae, and J-515 with Saccharomyces fermentati. 2. The strains D-71 and J-515 were showed the highest ethanol fermentation activity in the crushed corn mash of high concentration at $35^{\circ}C$, and showed the slightly lower at $40^{\circ}C$ than in the case of $35^{\circ}C$. 3. The strains D-71 and J-515 were showed the very higher ethanol fermentation activity than that of compared strain at $35^{\circ}C$ and $40^{\circ}C$, and at these temperature, fermentation period was a little bit of short. 4. On fermentation test using D-71 and J-515, the residual total sugar in the mash was very lower at $35^{\circ}C$.

  • PDF

Characterization of Ethanol Fermentation Using Alginate Immobilized Thermotolerant Yeast Cells

  • Sohn, Ho-Yong;Park, Wan;Jin, Ingnyol;Seu, Jung-Hwn
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.62-67
    • /
    • 1997
  • To enhance the hyperproductive and low energy-consuming ethanol fermentation rate, the thermotolerant yeast S. cerevisiae RA-74-2 cells were immobilized. An efficient immobilization condition was proved to be $1.5{\%}$ (w/v) alginate solution, neutral pH and 20 h activation of beads. The fermentation characteristics and stability at various temperatures were examined as compared with free S. cerevisiae RA-74-2 cells. The immobilized cells had excellent fermentation rate at the range of pH 3-7 at 30-$42^{\circ}C$ in 15-$20{\%}$ glucose media. When the seed volume was adjusted to 0.12 (v/v) (6ml bead/50 ml medium), $11{\%}$ (w/v) ethanol was produced during the first 34 hand $12.15{\%}$ (w/v) ethanol [$95{\%}$ (w/v) of theoretical yield] during the first 60 h in $25{\%}$ glucose medium. In repetitive fermentation using a 2 litre fermentor, 5.79-$7.27{\%}$ (w/v) ethanol [76-$95{\%}$ (w/v) of theoretical yield] was produced during the 40-55 h in $15{\%}$ glucose media. These data suggested the fact that alginate beads of thermotolerant S. cerevisiae RA-74-2 cells would contribute to economic and hyperproductive ethanol fermentation at high temperature.

  • PDF

The Conditions Affecting Ethanol Tolerance of Yeast strains in Alcohol Fermantation - Study on the Fermantation Temperature and Substrate Type (알콜발효에서 효모의 에탄올 내성 조건-발효온도와 기질종류에 대한 연구)

  • 김형진;유연우
    • KSBB Journal
    • /
    • v.4 no.2
    • /
    • pp.167-171
    • /
    • 1989
  • The alcohol fermentation using glucose and lactose was carried out to study the effect of fermentation temperature on the ethanol tolerance of Saccharomyces cerevisiae STV89 and Kluyveromyces fragilis CBS397. The maximum specific growth rate and ethanol production rate were increased up to 35$^{\circ}C$ with the fermentation temperature, although maximum ethanol and cell concentration were decreased by increasing the fermentation temperature. The cell viability was also improved by lowering the fermentation temperature. Under the experimental conditions, the best ethanol tolerance of yeast strains was obtain at $25^{\circ}C$. The ethanol tolerance of S. cerevisiae is better than that of K. fragilis at the same fermentation condition. With respect to the carbon source, glucose is found to be more favorable for ethanol tolerance of K. fragilis than lactos.

  • PDF

Ethanol Fermentation of Fusant between Heterologous Transformant of Saccharomyces cerevisiae and Candida tropicalis in Mini-jar Fermentor Scale (Mini-jar fermentor Scale에서의 Fusant의 Ethanol 발효)

  • Seu, Jung-Hwn;Kim, Young-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.17 no.1
    • /
    • pp.8-13
    • /
    • 1989
  • The optimum conditions for ethanol fermentation and ethanol productivity of the fusant ESC-14-15 were examined in a mini-jar formentor scale (working volume : 2.5 liters) to assess the possibility of practical application. Addition of yeast extract to fermentation broth greatly enhanced the ethanol productivity and shortened the period of fermentation. The pH 4.2 was more favorable than pH 5.5 with respect to ethanol productivity and fermentation speed. The optimum concentration of liquefied potato starch for ethanol fermentation of FSC-14-15 was 15%(w/v) and the corresponding productivity was 8.7%(v/v) of ethanol with an efficiency of 80.6% to the theoretical maximum. When the fresh fermentation broth containing 20% of liquefied potato starch was inoculated with love(v/v) of inoculum, the fusant FSC-14-75 produced 11.0%(v/v) of ethanol in 4 days, which is considered comparable to that from an industrial process. From the liquefied cassava starch or the equal mixture of liquefied barley and sweet potato starch prepared according to the same method as in the industrial process except saccharification step, the fusnnt FSC-14-75 produced 8.5%(v/v) or 7.6%(v/v) of ethanol in 4 days, respectively.

  • PDF

Continuous Alcohol Fermentation by a Tower Fermentor with Cell Recycle Using Flocculating Yeast Strain (Flocculating 효모균주의 재순환에 의한 Tower 발효조를 이용한 연속알콜발효)

  • 페차랏칸자나시리완;유연우김공환
    • KSBB Journal
    • /
    • v.4 no.1
    • /
    • pp.11-14
    • /
    • 1989
  • A study on the continuous fermentation with cell recycle by a tower fermentor to produce ethanol has been carried out. ethanol fermentation was conducted with flocculating yeast strain, Saccharomyces cerevisiae TS4, to compare the ethanol productivity with conventional continuous process. Employing a 15% glucose feed, a cell density of 50 g/l was obtaind. The ethanol productivity of the cell recycle system was found to be 26.5g EtOH/1-hr, which was nearly 7.5 times higher than the conventional continuous process without cell recycle. A cell recycle ratio of 7 to 8 resulted in the highest ethanol productivity and cell concentration. Thus the cell recycle ratio was found to be a key factor in controlling the production of clarified overflow liquid. An aeration rate above 3.8 $\times$ 10-3 VVM seemed to decrease the ethanol productivity. The continuous fermentation with cell recycle was successfully used in the separation of cells from fermentation broth with enhancement of mixing in the tower fermentor.

  • PDF

Enhancement of Ethanol Tolerance of Lactose Assimilating Yeast Strain by Protoplast Fusion

  • Ryu, Yeon-Woo;Jang, Heang-Wook;Lee, Haing-Sook
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.3
    • /
    • pp.151-156
    • /
    • 1991
  • In order to construct a yeast strain having high ethanol tolerance together with good lactose fermentation ability, the protoplast fusion using Saccharomyces cerevisiae STV 89 and Kluyveromyces fragilis CBS 397 was carried out. Auxotrophic mutants of K. fragilis were obtained as a selection marker by treatment of ethylmethane sulfonate. The best mutant for protoplast fusion was selected based on the capabilities of ${\beta}-galactosidase$ production and lactose fermentation. The protoplast fusion using polyethylene glycol and calcium chloride solution led to the fusion frequence of $3{\times}10^{-6}$ and a number of fusants were obtained. Among these fusants, a fusant F-3-19 showed the best results in terms of ethanol tolerance, ${\beta}-galactosidase$ activity and lactose fermentation. The performance of lactose fermentation and ethanol tolerance by this fusant were better than those of K. fragilis. Study on the ethanol tolerance having relation to fatty acid composition and intracellular ethanol concentration revealed that the fusant F-3-19 had a higher unsaturated fatty acids content and accumulated less amount of intracellular ethanol compared with a parent of K. fragilis.

  • PDF

Ethanol Fermentation of Raw Cassava Starch (II) (캇사바전분의 무증자당화에 의한 에타놀발효에 관한 연구(I I))

  • Bae, Moo;Lee, Jae-Moon
    • Microbiology and Biotechnology Letters
    • /
    • v.12 no.4
    • /
    • pp.261-264
    • /
    • 1984
  • The optimal condition of the ethanol fermentation from raw cassava starch by simultaneous saccharification - fermentation (SSF) was studied using glucoamylase from Aspergillus sp. and a yeast strain. The rate and yield of ethanol production were optimum at pH 3.6 with shaking. The fine milling treatment was effective for both saccharification and SSF of raw cassava starch. The presaccharification at 6$0^{\circ}C$ for 1 hr before SSF increased the rate and yield of ethanol production, as well. To increase the ethanol concentration after fermentation the substrate concentration could be increased up to 2195 without the problem of viscosity. The use of high concentration ethanol tolerant yeast strains and high substrate concentration produced ethanol higher than 10%(W/V) after fermentation for 5 days.

  • PDF

Continuous Ethanol Fermentation in Air-lift Reactor by Flocculent Saccharomyces cerevisiae CA-1 (응집성 Saccharomyces cerevisiae CA-1에 의한 에탄올 연속발효)

  • Lee, Yong-Bum;Shim, Sang-Kook;Han, Myun-Soo;Chung, Dong-Hyo
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.6
    • /
    • pp.717-722
    • /
    • 1995
  • Using a flocculating Saccharomyes cerevisiae CA-1, an air-lift reactor equipped with a modified settler was used for ethanol fermentation. The effects of conditions such as aeration rate, initial glucose concentration, and dilution rate were studied using the air-lift reactor. In batch fermentation, optimum aeration rate was 0.5 vvm. In continuous fermentation, aeration rate and initial pH were fixed 0.5 vvm and 4.5, substrate concentration and dillution rate were changed 10-15% and 0.1-1.3. The maximum ethanol productivity was shown to be 20.4 g/l$\cdot $h in 10% glucose and 0.7 h$^{-1}$ dilution rate., and optimum operation condition considering the ethanol productivity and glucose utilization ratio was 0.5 h$^{-1}$ dilution rate in 10% glucose concentration.

  • PDF

Ethanol Production by Separate Hydrolysis and Fermentation and Simultaneous Saccharification and Fermentation Using Saccharina japonica (Saccharina japonica를 이용한 전처리 및 분리당화발효와 동시당화발효로부터 에탄올 생산)

  • Kim, Min-Ji;Kim, Sung-Koo
    • KSBB Journal
    • /
    • v.27 no.2
    • /
    • pp.86-90
    • /
    • 2012
  • Ethanol fermentations were carried out using simultaneous saccharification and fermentation (SSF) and separated hydrolysis and fermentation (SHF) processes with monosaccharides from seaweed, Saccharina japonica (sea tangle, Dasima) as the biomass. The pretreatment was carried out by thermal acid hydrolysis with $H_2SO_4$ or HCl. Optimal pretreatment condition was determined at 10% (w/v) seaweed slurry with 37.5 mM $H_2SO_4$ at $121^{\circ}C$ for 60 min. To increase the yield of saccharfication, isolated marine bacteria Bacillus sp. JS-1 was used and 48 g/L of reducing sugar were produced. Ethanol fermentation was performed using SSF and SHF process with Pachysolen tannophilus KCTC 7937. The ethanol concentration was 6.5 g/L by SSF and 6.0 g/L by SHF.