• Title/Summary/Keyword: Ethanol blended fuel

Search Result 44, Processing Time 0.022 seconds

FUEL PROPERTIES AND EMISSIONS CHARACTERISTICS OF ETHANOL-DIESEL BLEND ON SMALL DIESEL ENGINE

  • Xu, B.Y.;Qi, Y.L.;Zhang, W.B.;Cai, S.L.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.9-18
    • /
    • 2007
  • Phase separation and low cetane number are the main barriers to the large-scale use of ethanol-diesel blend fuel on small diesel engines. In this paper, an additive package is designed on the basis of the blended fuel properties to overcome these limitations. The experiments show that the solubility of ethanol in diesel is evidently increased by adding $1{\sim}2%$ (in volume) of the additive package and the flammability of ethanol-diesel blend fuel with the additive has reached the neat diesel level under the cold start conditions. Effects of the ethanol content in diesel on fuel economy, combustion characteristics, and emission characteristics are also investigated with the ethanol blend ratios of 10%, 20% and 30%. The increase in ethanol content shows that the specific fuel consumption and the brake thermal efficiency are both gradually increased compared to neat diesel. The soot concentrations of the three blended fuels are all greatly lower than that of neat diesel. $NO_x$ emission is increased with an increase in the engine load and is reduced with the increase in the ethanol blend ratio under a high load.

An Experimental Study on the Performance and Emission Characteristics of Diesel Engine Fuelled with a Blend of Ethanol (에탄올을 혼합한 디젤기관의 성능과 배기특성에 관한 실험적 연구)

  • PARK, JUN YOUNG;HAN, SUNG BIN;CHUNG, YON JONG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.721-726
    • /
    • 2016
  • Alcohols are particularly attractive as alternative fuels because they are a renewable resource. This paper describes the performance and emission characteristics of ethanol and diesel blended fuels in a compression ignition engine. This experimental results showed that ethanol diesel blended fuels decreased the torque and brake mean effective pressure. And experimental results indicated that using ethanol-diesel blended fuel, smoke, CO and HC emissions decreased as a result of the ethanol addition.

Characteristics of Exhaust Emissions and Particle Size Distribution using Biofuel Blended Diesel Fuel in CRDI Diesel Engine with CPF (CPF를 장착한 CRDI 디젤엔진에 바이오 혼합연료 사용에 따른 배출가스 특성 및 입자수분포 특성)

  • Kim, H.N.;Sung, Y.H.;Kim, T.J.;Choi, B.C.;Lim, M.T.;Suh, J.J.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.5-12
    • /
    • 2008
  • We measured emission characteristics of CRDI diesel engine equipped with a commercial CPF. Experimental parameters adopted a neat diesel fuel, a blend of diesel fuel with 20% biodiesel, a blend of diesel fuel with 15% biodiesel and 5% ethanol. The experiments were carried out to measure the emission and engine performance according to ESC 13-mode cycles. The maximum torque with biodiesel blend fuel is slightly lower than that of neat diesel fuel in the entire the 13-mode cycles, and 5% ethanol and 15% biodiesel blend fuel is slightly higher than that of neat diesel fuel. THC and CO emissions of the biofuel blended diesel fuel were slightly increased and decreased, and mean conversion efficiencies of THC and CO on the commercial CPF were achieved about 70$\sim$87% in the ESC 13-mode. From the measurement by the Scanning Mobility Particle Sizer(SMPS), the total number and mass of nano-sized particles by a commercial CPF were decreased about 97.8% and 96.8 % in the range of the nano-size from 10.6 to 385nm, respectively.

  • PDF

COMBUSTION VISUALIZATION AND EMISSIONS OF A DIRECT INJECTION COMPRESSION IGNITION ENGINE FUELED WITH BIO-DIESOHOL

  • LU X.;HUANG Z.;ZHANG W.;LI D.
    • International Journal of Automotive Technology
    • /
    • v.6 no.1
    • /
    • pp.15-21
    • /
    • 2005
  • The purpose of this paper is to experimentally investigate the engine pollutant emissions and combustion characteristics of diesel engine fueled with ethanol-diesel blended fuel (bio-diesohol). The experiments were performed on a single-cylinder DI diesel engine. Two blend fuels were consisted of $15\%$ ethanol, $83.5\%$ diesel and $1.5\%$ solublizer (by volume) were evaluated: one without cetane improver (E15-D) and one with a cetane improver (E15-D+CN improver). The engine performance parameters and emissions including fuel consumption, exhaust temperature, lubricating oil temperature, Bosch smoke number, CO, NOx, and THC were measured, and compared to the baseline diesel fuel. In order to gain insight into the combustion characteristics of bio-diesohol blends, the engine combustion processes for blended fuels and diesel fuel were observed using an Engine Video System (AVL 513). The results showed that the brake specific fuel consumption (BSFC) increased at overall engine operating conditions, but it is worth noting that the brake thermal efficiency (BTE) increased by up to $1-2.3\%$ with two blends when compared to diesel fuel. It is found that the engine fueled with ethanol-diesel blend fuels has higher emissions of THC, lower emissions of CO, NOx, and smoke. And the results also indicated that the cetane improver has positive effects on CO and NOx emissions, but negative effect on THC emission. Based on engine combustion visualization, it is found that ignition delay increased, combustion duration and the luminosity of flame decreased for the diesohol blends. The combustion is improved when the CN improver was added to the blend fuel.

An Experimental Study on the Combustion an Emission Characteristics with Injection Pressure of Biodiesel-Ethanol Blending Fuel in CVC (정적연소기 내 바이오디젤-에탄올 혼합연료의 분사압력에 따른 연소 및 배출가스에 관한 연구)

  • Eom, Dong-Seop;Park, Kyoung-Gyun;Dong, Yoon-Hee;Lee, Seang-Wook
    • Journal of ILASS-Korea
    • /
    • v.15 no.3
    • /
    • pp.150-156
    • /
    • 2010
  • Ethanol has properties of a lower setting point, higher oxygen contents, lower cetane numbers, and also higher volatility compared to biodiesel. Thus, biodiesel fuel can be improved in the fluidity of blending fuel and exhaust emissions by blended ethanol fuel. This research aims to understand combustion characteristics of biodiesel-ethanol blending fuel inside a constant volume chamber. High speed camera was applied to visualize the physics of development of combustion processes, and combustion pressure and exhaust emissions were measured at several blending ratios of ethanol and biodiesel fuel. This information may contribute to improve the performance of biodiesel engine and reduce emissions in future.

A Study on Engine Performance and Exhaust Emission Characteristics of Gasoline Engine using Bio-ethanol Blended Fuel (가솔린 엔진(3.8L)에서 바이오에탄올 혼합연료의 성능 및 배출특성에 관한 연구)

  • Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.4
    • /
    • pp.131-137
    • /
    • 2012
  • This article is about using the fuel mixed with 10% and 20% bio-ethanol to gasoline for the engine as a way to reduce carbon emission before commercializing future automobiles like fuel cell cars. The fuel mixed with 10% and 20% bio-ethanol showed output equivalent to that of the previous gasoline fuel. CO and $CO_2$ emission was somewhat reduced, but the difference was not significant. And the consumption of the fuel increased slightly. However, bio-ethanol is produced from bio mass growing with the absorption of carbon dioxide, so the total amount of carbon dioxide did not increase according to the result. In NOx, as the use of ethanol increases, the effect of reduction gets greater, and the emission of oxygen showed almost no change compared with gasoline.

Effect of Ethanol Content on Fine Soot Particle Emission from a Diesel-Ethanol Blended Fuel Diesel Engine (디젤-에탄올 혼합연료의 에탄올 함량이 미세 그을음(Soot) 입자 배출특성에 미치는 영향)

  • Park, Su-Han;Cha, June-Pyo;Kwon, Seok-Ju;Park, Sung-Wook;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1359-1365
    • /
    • 2011
  • The purpose of this study is to investigate the effect of ethanol content on the emission of nanosized particles from a diesel-ethanol blended fuel engine. The engine combustion and exhaust emission characteristics of a singlecylinder diesel engine were analyzed using an emission analyzer and an SMPS(scanning mobility particle sizer). The analysis revealed that soot emission increased with the ignition delay. When the ignition delay was fixed, an increase in the ethanol content caused a decrease in the soot emission. With an increase in the ethanol blending ratio, the number concentration and mass distribution of nanosized particles generally decreased. However, for 30% ethanol blending, large particles were observed because of the agglomeration of soot particles, and consequently, the particle mass increased.

Spray and Combustion Characteristics of Biodiesel-Ethanol Blending Fuel (바이오디젤-에탄올 혼입연료의 분무 및 연소특성)

  • Eom, Dong-Seop;Choi, Yeon-Soo;Choi, Yong-Seok;Lee, Seang-Wook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.1-7
    • /
    • 2009
  • Ethanol has properties of a lower setting point, higher oxygen contents, lower cetane numbers, and also higher volatility compared to biodiesel. Thus, biodiesel fuel can be improved in the fluidity of and exhaust emissions by blended ethanol fuel. This research aims to understand combustion characteristics of biodiesel-ethanol blending fuel inside a constant volume chamber by obtaining some fundamental data in order to improve combustion atmosphere. To understand the physics of combustion, high speed camera was applied to visualize the development of combustion processes, and combustion pressure and exhaust emission were measured at several blending ratios of ethanol and biodiesel fuel. This information may contribute to improve the performance of biodiesel engine and reduce emissions in future.

Performance Evaluation of Ethanol Blended Hydrogen Peroxide Thrusters (에탄올 블렌딩한 과산화수소 추력기의 성능평가)

  • Lee, Jeong-Sub;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.100-103
    • /
    • 2012
  • The blending method that is an addition of small quantity of fuel was used to increase the performance of green propellant thruster. 90 wt.% hydrogen peroxide as a green propellant was selected, and ethanol was used as a blended fuel. The o/f ratio was chosen as 50 which has higher theoretical performance than 98 wt.% hydrogen peroxide. The chamber temperature of blended hydrogen peroxide was higher than adiabatic chamber temperature of hydrogen peroxide. Therefore, performance can be improved by ethanol blending. Several catalyst and its support were compared to find appropriate catalyst for decomposition and combustion of ethanol blended hydrogen peroxide. As a experimental results, Pt was suitable, but $MnO_2$ had a chamber instability when it was reused. The ${\alpha}-Al_2O_3$ which is high heat-resistant support showed very unstable performance in both Pt and $MnO_2$ catalyst since it has low decomposition performance.

  • PDF

A Study on the Characteristics of Spark Ignition Engine Cleanliness by Low Level Bio-Alcohol Blending (저농도 바이오알코올 혼합에 따른 스파크 점화 엔진 청정 특성 연구)

  • CHA, GYUSOB;NO, SOOYOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.5
    • /
    • pp.428-435
    • /
    • 2019
  • A comparative evaluation of engine cleanliness was performed on the transport gasoline blended with bio- alcohols, and this study was considered to achieve the aim of greenhouse gas reduction in Korea. In particular, the fuel blended with bio-ethanol and bio-butanol showed the best engine cleaning performance both on combustion chamber deposits and intake valve deposits. The deposit control gasoline additive was effective to remove intake valve deposits. In contrast, the amount of combustion chamber deposits were tend to increase even though fuels blended with bio-alcohols were used. In overall, fuels blended with bio-alcohols, compared to fossil fuels, still showed outstanding performance in terms of engine cleanliness.