• 제목/요약/키워드: Etched microgrooves

검색결과 5건 처리시간 0.022초

Effect of etched microgrooves on hydrophilicity of titanium and osteoblast responses: A pilot study

  • Park, Jung-Ae;Lee, Sung-Bok Richard;Ahn, Su-Jin;Lee, Suk-Won
    • The Journal of Advanced Prosthodontics
    • /
    • 제2권1호
    • /
    • pp.18-24
    • /
    • 2010
  • PURPOSE. The aim of this pilot study was to investigate the effect of etched microgrooves on the hydrophilicity of Ti and osteoblast responses. MATERIAL AND METHODS. Microgrooves were applied on Ti to have 15 and $60{\mu}m$ width, and 3.5 and $10{\mu}m$ depth by photolithography, respectively. Further acid etching was applied to create Ti surfaces with etched microgrooves. Both smooth- and acid-etched Ti were used as the controls. The hydrophilicity of Ti was analyzed by determining contact angles. Cell proliferation and osteogenic activity of MC3T3 mouse preosteoblasts were analyzed by bromodeoxyuridine assay and alkaline phosphatase (ALP) activity test, respectively. One-way ANOVA, Pearson's correlation analysis and multiple regression analysis were used for statistics. RESULTS. Etched microgrooves significantly increased the hydrophilicity of Ti compared to the smooth Ti. $60{\mu}m$-wide etched microgrooves significantly enhanced cell proliferation, whereas the osteogenic activity showed statistically non-significant differences between groups. Result of the osteogenic activity significantly correlated with those of hydrophilicity and cell proliferation. Hydrophilicity was determined to be an influential factor on osteogenic activity. CONCLUSION. This study indicates that increase in hydrophilicity of Ti caused by etched microgrooves acts as an influential factor on osteogenic activity. However, statistically non-significant increase in the ALP activity suggests further investigation.

MICROPATTERNED GROOVES AND ACID-ETCHING ON TITANIUM SUBSTRATA ALTER VIABILITY AND GENE EXPRESSION OF ADHERED HUMAN GINGIVAL FIBROBLASTS: A PILOT STUDY

  • Lee, Suk-Won;Kim, Su-Yeon;Lee, Keun-Woo
    • 대한치과보철학회지
    • /
    • 제45권3호
    • /
    • pp.375-381
    • /
    • 2007
  • Statement of problem. Prior to determining an optimal width of micropatterned grooves provided on titanium substrata, we have done a pilot study using surface topographies in combined microm and submicrom levels. Purpose. The purpose of this study was twofold 1) to assess the proliferation and 2) to analyze the expression of genes encoding the intracellular signaling proteins involved in cell-substratum adhesions and adhesion-dependent G1 phase cell cycle progression of human gingival fibroblasts plated on smooth and microgrooved/acid-etched titanium substrata. Material and methods. Three groups of titanium discs as NE0 (smooth Ti substrata), E15 (Ti substrata with microgrooves of $15{\mu}m$ of spacing and $3.5{\mu}m$ in depth and with further acidetching), and E30 (Ti substrata with microgrooves of $30{\mu}m$ spacing and $3.5{\mu}m$ in depth and with further acid-etching) served as the human gingival fibroblasts' substrata. Viability and proliferation of fibroblasts were determined using an XTT assay. Gene expressions of fibronectin, ${\alpha}5$ integrin, CDK4, and $p27^{kip}$ were analyzed in RT-PCR. Cell-substratum interactions were analyzed in SEM. Results. From the XTT assay at 24 h incubation, the mean optical density (OD) value of E15 was significantly greater than the values of E30 and NE0. At 48 and 96 h however, the mean OD values of E30 were significantly greater than the values of E15 and NE0. No differences in the expression of PCR transcripts at 96 h incubations were noted between groups, whereas at 48 h, an unexpected increase in the expression of all the transcripts were noted in E15 compared with other two groups. Fibroblasts were observed to orient and adhere inside the microgrooves. Conclusion. Micropatterned grooves and acid-etching on Ti substrata alter viability and gene expression of adhered human gingival fibroblasts.

Microgrooves on titanium surface affect peri-implant cell adhesion and soft tissue sealing; an in vitro and in vivo study

  • Lee, Hyo-Jung;Lee, Jaden;Lee, Jung-Tae;Hong, Ji-Soo;Lim, Bum-Soon;Park, Hee-Jung;Kim, Young-Kwang;Kim, Tae-Il
    • Journal of Periodontal and Implant Science
    • /
    • 제45권3호
    • /
    • pp.120-126
    • /
    • 2015
  • Purpose: With the significance of stable adhesion of alveolar bone and peri-implant soft tissue on the surface of titanium for successful dental implantation procedure, the purpose of this study was to apply microgrooves on the titanium surface and investigate their effects on peri-implant cells and tissues. Methods: Three types of commercially pure titanium discs were prepared; machined-surface discs (A), sandblasted, large-grit, acid-etched (SLA)-treated discs (B), SLA and microgroove-formed discs (C). After surface topography of the discs was examined by confocal laser scanning electron microscopy, water contact angle and surface energy were measured. Human gingival fibroblasts (hGFs) and murine osteoblastic cells (MC3T3-E1) were seeded onto the titanium discs for immunofluorescence assay of adhesion proteins. Commercially pure titanium implants with microgrooves on the coronal microthreads design were inserted into the edentulous mandible of beagle dogs. After 2 weeks and 6 weeks of implant insertion, the animal subjects were euthanized to confirm peri-implant tissue healing pattern in histologic specimens. Results: Group C presented the lowest water contact angle ($62.89{\pm}5.66{\theta}$), highest surface energy ($45{\pm}1.2mN/m$), and highest surface roughness ($Ra=22.351{\pm}2.766{\mu}m$). The expression of adhesion molecules of hGFs and MC3T30E1 cells was prominent in group C. Titanium implants with microgrooves on the coronal portion showed firm adhesion to peri-implant soft tissue. Conclusions: Microgrooves on the titanium surface promoted the adhesion of gingival fibroblasts and osteoblastic cells, as well as favorable peri-implant soft tissue sealing.

Effect of microgrooves and fibronectin conjugation on the osteoblast marker gene expression and differentiation

  • Park, Su-Jung;Leesungbok, Richard;Ahn, Su-Jin;Im, Byung-Jin;Lee, Do Yun;Jee, Yu-Jin;Yoon, Joon-Ho;Cui, Taixing;Lee, Sang Cheon;Lee, Suk Won
    • The Journal of Advanced Prosthodontics
    • /
    • 제7권6호
    • /
    • pp.496-505
    • /
    • 2015
  • PURPOSE. To determine the effect of fibronectin (FN)-conjugated, microgrooved titanium (Ti) on osteoblast differentiation and gene expression in human bone marrow-derived mesenchymal stem cells (MSCs). MATERIALS AND METHODS. Photolithography was used to fabricate the microgrooved Ti, and amine functionalization (silanization) was used to immobilize fibronectin on the titanium surfaces. Osteoblast differentiation and osteoblast marker gene expression were analyzed by means of alkaline phosphatase activity assay, extracellular calcium deposition assay, and quantitative real-time PCR. RESULTS. The conjugation of fibronectin on Ti significantly increased osteoblast differentiation in MSCs compared with non-conjugated Ti substrates. On the extracellular calcium deposition assays of MSCs at 21 days, an approximately two-fold increase in calcium concentration was observed on the etched 60-${\mu}m$-wide/10-${\mu}m$-deep microgrooved surface with fibronectin (E60/10FN) compared with the same surface without fibronectin (E60/10), and a more than four-fold increase in calcium concentration was observed on E60/10FN compared with the non-etched control (NE0) and etched control (E0) surfaces. Through a series of analyses to determine the expression of osteoblast marker genes, a significant increase in all the marker genes except type I collagen ${\alpha}1$ mRNA was seen with E60/10FN more than with any of the other groups, as compared with NE0. CONCLUSION. The FN-conjugated, microgrooved Ti substrate can provide an effective surface to promote osteoblast differentiation and osteoblast marker gene expression in MSCs.

마이크로그루브 상 인간치은섬유아세포의 유전자 발현 분석: DNA microarray 연구 (Regulation of human gingival fibroblast gene expression on microgrooves: A DNA microarray study)

  • 이경호;이성복;안수진;박수정;이석원
    • 대한치과보철학회지
    • /
    • 제55권4호
    • /
    • pp.361-371
    • /
    • 2017
  • 목적: 마이크로그루브 상 인간치은섬유아세포의 유전자발현감식을 DNA microarray를 이용하여 연구하는 것이다. 재료 및 방법: Grade II 티타늄 시편을 이용하여 표면에 마이크로그루브(폭/깊이: $60{\mu}m/10{\mu}m$, E60/10)를 형성하고 불산으로 산에칭하여 실험군으로 사용하였다. 표면처리를 하지 않은 평활한 티타늄 표면(NE0)을 대조군으로 사용하였다. 실험군과 대조군에 인간치은섬유아세포를 배양한 후 total RNA를 추출하였다. Oligonucleotide microarray를 시행하여 실험군과 대조군 간 다양한 유전자 발현량의 변화를 확인하였다. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis를 통해 DNA chip의 발현 결과를 mapping하여 실험 조건에 따른 유전자 발현량의 변화를 pathway 수준에서 파악하였다. 결과: E60/10 마이크로그루브 표면과 NE0 표면에 대한 유전자 발현량 비교분석 결과, NE0 표면에 비하여 E60/10 마이크로그루브 표면에서 1.5배 이상 유의한 발현 차이를 보인 유전자는 123개, 2배 이상 유의한 발현 차이를 보인 유전자는 19개였다. 실험 조건에 따른 유전자 발현량의 변화를 KEGG pathway analysis를 통하여 확인하였고, 다양한 유전자 발현 결과들 중 대표적인 세포접착, 증식, 활성 관련 세포신호전달을 규명하였다. 결론: 마이크로그루브 표면은 다양한 유전자 발현 변화를 유도하고 관련 세포신호 전달을 유도한다. 본 연구의 결과에 따라서, 마이크로그루브는 유전자 발현 변화 및 세포신호 전달 활성화 등을 통한 세포활성도 증진을 필요로 하는 다양한 생체재료들의 표면으로 사용될 수 있다.