• Title/Summary/Keyword: Estuarine Weir

Search Result 6, Processing Time 0.023 seconds

Simulation of circulation in Estuarine Lake caused by Operation of Drainage gates (배수갑문 운영을 고려한 간척 하구호의 해수순환모의)

  • Park, Young-Jin;Eom, Myung-Chul;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.313-317
    • /
    • 2005
  • This study aimed to estimate applicability of a model to simulate circulation in estuarine lake caused by operation of drainage gates. The model consists of 2D (depth-averaged) hydrodynamic models, Delft3D-FLOW model and operation model for drainage gates. The flow through drainage gates was calculated using weir formulae with discharge coefficient, 0.8. The simulations are performed under two conditions: uncontrolled condition and controlled by periods of two days. The results on simulation of the model showed that the water level in estuarine lake was tend to increase above mean sea level. Therefore it was proved that the calibration and verification were needed in order to applicate this model for Saemankeum area.

  • PDF

Semiweekly variation of Spring Phytoplankton Community in Relation to the Freshwater Discharges from Keum River Estuarine Weir, Korea (금강하구언 담수방류와 춘계 식물플랑크톤 군집의 단주기 변동)

  • Yih, Won-Ho;Myung, Geum-Og;Yoo, Yeong-Du;Kim, Young-Geel;Jeong, Hae-Jm
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.3
    • /
    • pp.154-163
    • /
    • 2005
  • Irregular discharges of freshwater through the water gates of the Keum River Estuarine Weir, Korea, whose construction had been completed in 1998 with its water gates being operated as late as August 1994, drastically modified the estuarine environment. Sharp decrease of salinity along with the altered concentrations of inorganic nutrients are accompanied with the irregular discharges of freshwater into the estuary under the influence of regular semi-diurnal tidal effect. Field sampling was carried out on the time of high tide at 2 fixed stations(St.1 near the Estuarine Weir and St.2 off Kunsan Ferry Station) every other day for 4 months from mid-February 2004 to investigate into the semi-weekly variation of spring phytoplankton community in relation to the freshwater discharges from Keum River Estuarine Weir. CV(coefficient of variation) of salinity measurements was roughly 2 times greater in St.1 than that in St.2, reflecting extreme salinity variation in St.1 Among inorganic nutrients, concentrations of N-nutrients($NO_3^-,\;NO_2^-$ and $NH_4^+$) were clearly higher in St.1, to imply the more drastic changes of the nutrient concentrations in St.1. than St.2 following the freshwater discharges. As a component of phytoplankton community, diatoms were among the top dominants in terms of species richness as well as biomass. Solitary centric diatom, Cyclotella meneghiniana, and chain-forming centric diatom, Skeletonema costatum, dominated over the phytoplankton community in order for S-6 weeks each (Succession Interval I and II), and the latter succeeded to the former from the time of <$10^{\circ}C$ of water temperature. Cyanobacterial species, Aphanizomenon Posaquae and Phormidium sp., which might be transported into the estuary along with the discharged freshwater, occupied high portion of total biomass during Succession Interval III(mid-April to late-May). During this period, freshwater species exclusively dominated over the phytoplankton community except the low concentrations of the co-occurring 2 estuarine diatoms, Cyclotella meneghiniana and Skeletonema costatum. During the 4th Succession Interval when the water temperature was over $18^{\circ}C$, the diatom, Guinardia delicatula, was predominant for a week with the highest dominance of $75\%$ in discrete samples. To summarize, during all the Succession Intervals other than Succession Interval III characterized by the extreme variation of salinity under cooler water temperature than $18^{\circ}C$, the diatoms were the most important dominants for species succession in spring. If the scale and frequency of the freshwater discharge could have been adjusted properly even during the Succession Interval III, the dominant species would quite possibly be replaced by other estuarine diatom species rather than the two freshwater cyanobacteria, Aphanizomenon flosaquae and Phormidium sp.. The scheme of field sampling every other day for the present study was concluded to be the minimal requirement in order to adequately explore the phytoplankton succession in such estuarine environment as in Keum River Estuary: which is stressed by the unpredictable and unavoidable discharges of freshwater under the regular semi-diurnal tide.

Semiweekly Variation of Spring Population of a Mixotrophic Ciliate Myrionecta rubra (=Mesodinium rubrum) in Keum River Estuary, Korea (춘계 금강 하구에서 혼합영양 섬모류인 Myrionecta rubra (=Mesodinium rubrum) 개체군의 단주기 변동)

  • Yih, Won-Ho;Myung, Geum-Og;Kim, Hyung-Seop;Jeong, Hae-Jin
    • ALGAE
    • /
    • v.20 no.3
    • /
    • pp.207-216
    • /
    • 2005
  • Myrionecta rubra, a mixotrophic ciliate, is a cosmopolitan red tide species which is commonly found in neritic and estuarine waters. M. rubra had long been listed as an “nculturable protist”until 2 different laboratory strains were finally established in 2 research groups at the beginning of this century, enabling us to perform initiative investigation into various aspect of the live M. rubra strains (Gustafson et al. 2000; Yih et al. 2004b; Johnson and Stoecker 2005). Field sampling was carried out on high tide at 2 fixed stations around Kunsan Inner Harbor (St.1 near the Estuarine Weir and St.2 off Kunsan Ferry Station) every other day for 4 months from mid-February 2004 to understand detailed figure of the recurrent spring blooms of M. rubra following the onset of the water gates operation of the Keum River Estuarine Weir on August 1994. With its maximum abundance of 272 cells mL$^{-1}$ in St.1, fluctuation pattern of the M. rubra population at the 2 stations was strikingly similar. Notable growth of M. rubra population started on late April, to cause M. rubra red tides during one month from mid-May in which “xceptionally low salinity days”without its red tide were intermittently inserted. High abundance of M. rubra over 50 cells mL$^{-1}$ was recorded at samples with their water temperature and salinity higher than 15${^{\circ}C}$ and 4.0 psu, respectively. During pre-bloom period when salinity fluctuation is moderate and the water temperature is cooler than 15°C, Skeletonema costatum, a chain-forming centric diatom, was most dominant. Cyanobacterial species such as Aphanizomenon flos-aquae and Phormidium sp. replaced other dominant phytoplankters on the days with “xceptionally low salinity”even during the main blooming period of M. rubra. To summarize, M. rubra could form spring blooms in Keum River Estuary when the level of salinity fluctuation was more severe than that for the dominant diatom Skeletonema costatum and milder than that for the predominance by freshwater cyanobacteria. Therefore, optimal control of the scale and frequency of freshwater discharges might lead us to partially modify the fluctuation pattern of M. rubra populations as well as the period of spring blooms by M. rubra in Keum River Estuary. Sampling time interval of 2 days for the present study or daily sampling was concluded to be minimally required for the detailed exploration into the spring blooms by M. rubra populations in estuaries with weirs like Keum River Estuary.

Comparative analysis of water surface spectral characteristics based on hyperspectral images for chlorophyll-a estimation in Namyang estuarine reservoir and Baekje weir (남양호와 백제보의 Chlorophyll-a 산정을 위한 초분광 영상기반 수체분광특성 비교 분석)

  • Jang, Wonjin;Kim, Jinuk;Kim, Jinhwi;Nam, Guisook;Kang, Euetae;Park, Yongeun;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.2
    • /
    • pp.91-101
    • /
    • 2023
  • In this study, we estimated the concentration of chlorophyll-a (Chl-a) using hyperspectral water surface reflectance in an inland weir (Baekjae weir) and estuarine reservoir (Namyang Reservoir) for monitoring the occurrence of algae in freshwater in South Korea. The hyperspectral reflectance was measured by aircraft in Baekjae Weir (BJW) from 2016 to 2017, and a drone in Namyang Reservoir (NYR) from 2020 to 2021. The 30 reflectance bands (BJW: 400-530, 620-680, 710-730, 760-790 nm, NYR: 400-430, 655-680, 740-800 nm) that were highly related to Chl-a concentration were selected using permutation importance. Artificial neural network based Chl-a estimation model was developed using the selected reflectance in both water bodies. And the performance of the model was evaluated with the coefficient of determination (R2), the root mean square error (RMSE), and the mean absolute error (MAE). The performance evaluation results of the Chl-a estimation model for each watershed was R2: 0.63, 0.82, RMSE: 9.67, 6.99, and MAE: 11.25, 8.48, respectively. The developed Chl-a model of this study may be used as foundation tool for the optimal management of freshwater algal blooms in the future.

Studies on Chemical and Biological Processes in the Keum River Estuary, Korea 2. Factors controlling chlorophyll-a distribution (금강 하구에서의 화학적, 생물학적 제과정에 관한 연구 II. Chlorlphyll-a 분포 결정 요인에 관하여)

  • 기준학;김정렬
    • 한국해양학회지
    • /
    • v.22 no.3
    • /
    • pp.207-215
    • /
    • 1987
  • The Keum River Estuary was investigated two times in April and July, 1986, to study process controlling chlorophyll distribution in estuarine waters. During the surveys, distribution patterns were studied for chlorophyll-a, nutrients, ph, SPM (Suspended Particulate Matter), DO (Dissolved Oxygen), temperature, salinity, etc. During April survey(low-discharge period), sea water penetrated to Kangkyung, about 35km upstream from the constructing weir, while in July (high-discharge period) only to 3 km upstream from the weir,In April SPM showed very high concentrations (500mg/l)on the average. But very low concentrations(about10mg/l)were observed in July due to high discharge of fresh water.Chlorophyll-a concentrations showed large variations both in time and space :much higher concentraations in July than in April and sharp decrease in concentrations at the fresh water-sea water interface (April:$6.5\mu\textrm{g}/{\ell}$ for fresh waters and 41.4\mu\textrm{g}/{\ell}$ forestuarine waters). Differebce ub chlorophyll-a concentrations for these two surveys appear to be caused mainly by the difference in effectiveness of penetrating lights controlled by SPM in the waters. Sharp decrease in chlorophll-a at the fresh water-sea water interface is believed to be resulted from mass mortality of fresh water phytoplankton caused by changes in osmotic pressure in the region. Observations in the same regions such as increase in AOU(Apparent Oxygen Utilization)and ammonia, decrease in PH,probably resulted through decomposition processes of dead planktons,furtuer support the idea.

  • PDF

Characteristics of Spatio-temporal Variation of the Water Quality in the Lower Keum River (금강 하류역에서 수질의 시공간적 변화특성)

  • YANG Han-Soeb;KIM Seong-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.3
    • /
    • pp.225-237
    • /
    • 1990
  • Various chemical constituents were measured from April to August 1988 at the down-ward 20 stations of Keum River, which is located in the Midwest of Korea, to understand the characteristics of water quality with respect to spatio-temporal variations of each constituent. The 24-hrs continuous measurements with 2-hrs interval were made simultaneously at station 2 near the estuary weir and station 9(Ganggyeong) of 35 km upstream from the weir in April. By the results observed for one day in April at station 2, salinity has a range of $7.88\~22.14\%_{\circ}$ and its temporal variability is identical to the pattern of tidal cycle in the neigh-bouring Kunsan Harbor. However, turbidity shows relatively high values only at an interval of 4~5 hours after the lowest salinity time, though hourly fluctuation of pH is very small. Silicate and dissolved inorganic nitrogen have inversively linear correlationships with salinity, implying the concentration of the two nutrients strongly regulated by estuarine mixing of sea and river waters. In contrast, phosphate sustains roughly a constant level over a wide salinity range and distinctly lower values than those corresponding to nitrate in the oceans. Such distributions of phosphate have been observed in some estuaries, and interpreted as driven by removal of dissolved phosphate into bottom sediments and the bufforing of phosphate by particulate matter. COD values at station 2 are relatively high in day-time(particularly afternoon) and in high-salinity periods. At station 9, saltwater intrusion was never found but water level changed to the extent of 2.5 m for one day. Although each parameter at this station exhibits very slight variations in their abundance for 24 hours compared with station 2, the contents of COD, silicate and ammonia are significantly higher than at station 2. Concentration of suspended matter is relatively high in the brackish water region up to $\~20$ km above the river mouth, probably due to strong tidal stirring of the bottom de-posits. Also, relatively high pH, COD and $O_2$ saturation at the upward stations of $40\~50$ km from the weir are presumably attributable to active photosynthesis of plants in the region. In general, COD and nutrients except phosphate are higher values at the upper stations than in the estuary zone, and show the highest abundances in July nearly at all stations. Finally, in the estuarine region tidal mixing of sea-river waters seems to be an important factor controlling the distributions of turbidity, COD, silicate and nitrate as well as salinity. However, water quality in the upward fresh-water zone is remarkably variable according to months or seasons.

  • PDF