Journal of the Korean Association of Geographic Information Studies
/
v.19
no.3
/
pp.127-143
/
2016
This study explored the variability in the accuracy of dasymetric population estimation with different grid cell sizes. Dasymetric population maps for Fulton County, Georgia in the US were generated from 30m to 420m at intervals of 30m using an automated intelligent dasymetric mapping technique, population data, and original and simulated land use and cover data. The accuracies of dasymetric population maps were evaluated using RMSE and adjusted RMSE statistics. Lumped fractal dimension values were calculated for the dasymetric population maps generated from resolutions of 30m to 420m using the triangular prism surface area (TPSA) method. The results show that a grid cell size of 210m or smaller is required to estimate population more accurately in terms of thematic accuracy, but a grid cell size of 30m is required to meet an acceptable spatial accuracy of dasymetric population estimation in the study area. The fractal analysis also indicates that a grid cell size of 120m is the optimal resolution for dasymetric population estimation in the study area.
This study estimates the relative position between body segments using segment orientation and segment-to-joint center (S2J) vectors. In many wearable motion tracking technologies, the S2J vector is treated as a constant based on the assumption that rigid body segments are connected by a mechanical ball joint. However, human body segments are deformable non-rigid bodies, and they are connected via ligaments and tendons; therefore, the S2J vector should be determined as a time-varying vector, instead of a constant. In this regard, our previous study (2021) proposed a method for determining the time-varying S2J vector from the learning dataset using a regression method. Because that method uses a deformation-related variable to consider the deformation of S2J vectors, the optimal variable must be determined in terms of estimation accuracy by motion and segment. In this study, we investigated the effects of deformation-related variables on the estimation accuracy of the relative position. The experimental results showed that the estimation accuracy was the highest when the flexion and adduction angles of the shoulder and the flexion angles of the shoulder and elbow were selected as deformation-related variables for the sternum-to-upper arm and upper arm-to-forearm, respectively. Furthermore, the case with multiple deformation-related variables was superior by an average of 2.19 mm compared to the case with a single variable.
Journal of the Korea Institute of Information and Communication Engineering
/
v.24
no.4
/
pp.536-545
/
2020
When general statistical regression methods are applied to predict the battery remaining time of a mobile smart device, they yielded the poor accuracy of estimating battery remaining time as the deviations of battery usage time per battery level became larger. In order to improve the estimation accuracy of general statistical regression methods, a preprocessing task is required to refine the measured raw data with large deviations of battery usage time per battery level. In this paper, we propose a data preprocessing framework that preprocesses raw measured battery consumption data and converts them into refined battery consumption data. The numerical results obtained by experimenting the proposed data preprocessing framework confirmed that it yielded good performance in terms of accuracy of estimating battery remaining time under general statistical regression methods for given refined battery consumption data.
In the design of sensorless control system for induction motor, high-precision speed estimation is one of the most difficult problems. To solve this problem, the common method is model reference adaptive method (MRAS). MRAS requires accurate motor parameters to estimate rotor speed precisely. However, when motor is running, the variety of temperature and magnetic saturation will lead to the change of motor parameters such as stator resistance and rotor resistance, which will lower the accuracy of the speed estimation. To improve the accuracy and rapidity of speed estimation, this paper analyses the mutual MRAS speed identification based on rotor flux linkage, and proposes an improved mutual MRAS speed identification based on back-EMF. The improved method is verified by Simulink simulation and motor experimental platform based on DSP2812. The results of simulation and experiment indicate that the method proposed by this paper can significantly improve the accuracy of speed identification, and speed up the response of identification.
The performance of a staring infrared imaging system can be characterized based on estimating the modulation transfer function (MTF). The slant edge method is a widely used MTF estimation method, which can effectively solve the aliasing problem caused by the discrete undersampling of the infrared focal plane array. However, the traditional slant edge method has some limitations such as the low precision of the edge angle extraction and using the approximate function to fit the edge spread function (ESF), which affects the accuracy of the MTF estimation. In this paper, we propose a modified slant edge method, including an edge angle extraction method that can improve the precision of the edge angle extraction and an ESF fitting algorithm which is based on the transfer function model of the imaging system, to enhance the accuracy of the MTF estimation. This modified slant edge method presents higher estimation accuracy and better immunity to noise and edge angle than other traditional methods, which is demonstrated by the simulation and application experiments operated in our study.
Cable supported structures have been widely used in civil engineering. Cable tension estimation has great importance in cable supported structures' analysis, ranging from design to construction and from inspection to maintenance. Even though the Bernoulli-Euler beam element is commonly used in the traditional finite element method for calculation of frequency and cable tension estimation, many elements must be meshed to achieve accurate results, leading to expensive computation. To improve the accuracy and efficiency, a dynamic finite element method for estimation of cable tension is proposed. In this method, following the dynamic stiffness matrix method, frequency-dependent shape functions are adopted to derive the stiffness and mass matrices of an exact beam element that can be used for natural frequency calculation and cable tension estimation. An iterative algorithm is used for the exact beam element to determine both the exact natural frequencies and the cable tension. Illustrative examples show that, compared with the cable tension estimation method using the conventional beam element, the proposed method has a distinct advantage regarding the accuracy and the computational time.
We compared two nondestructive methods for leaf area estimation using leaves of 16 common plant species classified into six types depending on leaf shape. Relatively good linear relationships between actual leaf area (LA) and leaf length (L), width (W), or the product of length and width (LW) were found for ordinary leaves with lanceolate, oblanceolate, linear and sagitttate shapes with entire margins, serrate margins, mixed margins with a entire form and shallow lobes, and ordinary incised margins. LA was better correlated with LW than L or W, with $R^2$ > 0.91. However, for deeply incised lobes, LA estimation using LW showed low correlation coefficient values, indicating low accuracy. On the other hand, a method using photographic paper showed a good correlation between estimates of area based on the mass of a cut-out leaf image on a photographic sheet (PW) and actual leaf area for all types of leaf shape. Thus, the PW method for LA estimation can be applied to all shapes of leaf with high accuracy. The PW method takes a little more time and has a higher cost than leaf estimation methods using LW based on leaf dimensions. These results indicate that researchers should choose their nondestructive LA estimation method according to their research goals.
Journal of the Korean Institute of Telematics and Electronics B
/
v.33B
no.9
/
pp.24-36
/
1996
In this paper, we discuss the errors in selectivity estimation using the multilevel grid file (MLGF). We first demonstrate that the estimatio errors stem from the uniformity assumption that records are uniformly distributed in their belonging region represented by an entry in a level of an MLGF directory. Bsed on this demonstration, we then investigate five factors affecting the accuracy of estimation: (1) the data distribution in a region (2) the number of records stored in an MLFG (3) the page size, (4) the query region size, and (5) the level of an MLFG directory. Next we present the tendancy of estimation errors according to the change of values for each factor through experiments. The results show that the errors decrease when (1) the distribution of records in a region becomes closer to the uniform one, (2) the number of records in an MLFG increases, (3) the page size decreases, (4) the query region size increases, and (5) the level of an MLFG directory employed as data distribution information becomes lower. After the definition of the granule ratio, the core formula representing the basic relationship between the estimation errors and the above five factors, we finally examine the change of estimation errors according to the change of the values for the granule ratio through experiments. The results indicate that errors tend to be similar depending on the values for the granule ratio regardless of the various changes of the values for the five factors. factors affecting the accuracy of estimation:
Image-based gender classification and age estimation of human are classic problems in computer vision. Most of researches in this field focus just only one task of either gender classification or age estimation and most of the reported methods for each task focus on accuracy performance and are not computationally light. Thus, running both tasks together simultaneously on low cost mobile or embedded systems with limited cpu processing speed and memory capacity are practically prohibited. In this paper, we propose a novel light-weight gender classification and age estimation method based on ensemble multitasking deep learning with light-weight processing neural network architecture, which processes both gender classification and age estimation simultaneously and in real-time even for embedded systems. Through experiments over various well-known datasets, it is shown that the proposed method performs comparably to the state-of-the-art gender classification and/or age estimation methods with respect to accuracy and runs fast enough (average 14fps) on a Jestson Nano embedded board.
Proceedings of the Korean Society of Precision Engineering Conference
/
2005.06a
/
pp.10-14
/
2005
This report deals with a feeding system of the Coaxal grinding machine, processing optical ferrule. This report also examines the applicability of using the feeding system for the Coaxial grinding machine, by mean of conducting performance estimation. The results are as follow; Repeatability of regulating wheel is $17{\mu}m$, R/W rotation accuracy is between $30\;\~\;40{\mu}m$. This means 'Rotation accuracy' is lower than the concentricity level. Backlash generation level at the feeding system of the grinding wheel is under $1{\mu}m$, thereby positioning accuracy is controlled within $2{\mu}m$ In terms of repeatability, you can find occasional error at the returning process from the starting point. This error is resulted from the measurement tolerance of the starting point sensor. We will get the repeatability level under control by $1{\mu}m$, through improving the soft-ware used and up-grading the sensor at the starting point.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.