• Title/Summary/Keyword: Estimation of flight fuel consumption

Search Result 6, Processing Time 0.022 seconds

Estimation of Flight Fuel Consumption Based on Flight Track Data and Its Accuracy Analysis (항적자료를 활용한 항공기 연료 소모량 추정 및 정확도 분석)

  • Park, Jang-Hoon;Ku, Sung-Kwan;Baik, Ho-Jong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.22 no.4
    • /
    • pp.25-33
    • /
    • 2014
  • As global warming becoming an environmentally serious issue, more attention is drawn to fuel consumption which is the direct source of green house gas emission. The fuel consumption by aircraft operation is not an exception. Motivated by the societal and environmental context, this paper explains a method for estimation of aircraft fuel consumed during their flights as well as the computational process using real flight track data. Applying so-called 'Total Energy Model' along with aircraft specific parameters provided in EUROCONTROL's Base of Aircraft Data (BADA) to aircraft radar track data, we estimate fuel consumption of individual aircraft flown between Gimpo and Jeju airports. We then assess the estimation accuracy by comparing the estimated fuel consumption with the actual one collected from an airline. The computational results are quite encouraging in that the method is able to estimate the actual fuel consumption within ${\pm}6{\sim}11%$ of error margin. The limitations and possible enhancements of the method are also discussed.

Estimation of Discretionary Fuel for Airline Operations

  • Chang, Hyoseok
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.2
    • /
    • pp.1-13
    • /
    • 2021
  • Fuel costs represent one of the most substantial expenses for airlines, accounting for 20% - 36% of the airline's total operating cost. The present study discusses the so-called discretionary fuel that is additionally loaded at the discretion of airlines to cover unforeseen variations from the planned flight operations. The proper range of the discretionary fuel to be loaded for economic flight operations was estimated by applying Monte Carlo simulation technique. With this simulation model for loading discretionary fuel, airlines cannot only reduce the total amount of fuel to be consumed but also minimize the risk of unplanned flight disruptions caused by insufficient fuel on board. Airlines should be able to guarantee proper risk management processes for fuel boarding by carrying enough fuel to high-risk airports. This study would provide a practical guideline for loading proper amounts of discretionary fuel. Future researchers should be encouraged to improve this study by elaborating the weather variable.

Estimation of Domestic Aircraft Fuel Consumption and Improved Accuracy (국내선 항공기 연료소모량 추정및 정확도 향상)

  • HyeJin Hong;JiHun Choi;SungKwan Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.649-657
    • /
    • 2023
  • ICAO adopted the Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) at the 39th General Assembly in 2016, and 115 countries, including South Korea, expressed their intention to participate in CORSIA as of January 1, 2023. Since carbon generated in the aviation industry is mainly caused by greenhouse gases emitted from aircraft engines, fuel consumption must be reduced to reduce carbon emissions. Prior research, such as simulation, is essential to predict the effectiveness of each plan and to make decisions about its implementation. High-quality data is needed to derive accurate results, but it has been difficult to secure actual fuel consumption data, as they are considered to be classified airline data. Therefore, in this paper, after establishing a model that estimates fuel consumption based on actual fuel consumption data, the model is to be advanced to improve its accuracy.

Aircraft Emission and Fuel Burn Estimation Due to Changes of Payload and Range (비행거리와 적재량 변화에 따른 항공기 온실가스 배출량 및 연료소모량 산정)

  • Joo, Hee-jin;Hwang, Ho-yon;Park, Byung-woon;Lim, Dongwook
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.4
    • /
    • pp.278-287
    • /
    • 2015
  • The potential impact of aircraft emissions on the current and projected climate of our planet is one of the more important environmental issues facing the aviation industry. Increasing concern over the potential negative effects of greenhouse gas emissions has motivated the development of an aircraft emission estimation and prediction system as one of the ways to reduce aircraft emissions and mitigate the impact of aviation on climate. Hence, in this research, using Piano-X software which was developed by Lissys Co., fuel consumption and emissions for 3 types of aircraft were estimated for different design payloads with various flight distances and flight paths. Fuel burns for economy speed, long range cruise speed, maximum range speed were also investigated with various flight distances and altitudes.

Reliability of Measurement Estimation in Altitude Engine Test (엔진 고도 시험의 측정 신뢰성 평가)

  • Lee, Jin-Kun;Yang, In-Young;Yang, Soo-Seok;Kwak, Jae-Su
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.3
    • /
    • pp.1-6
    • /
    • 2006
  • The altitude engine test is a sort of engine performance tests carried out to measure the performance of a engine at the simulated altitude and flight speed environments prior to that at the flight test. During the performance test of a engine, various values such as pressures and temperatures at different positions, air flow rate, fuel flow rate, and the load by thrust are measured. These measured values are used to derive the representative performance values such as the net thrust and the specific fuel consumption through a momentum equation. Hence each of the measured values has certain effects on the total uncertainty of the performance values. In this paper, the combined standard uncertainties of the performance variables at the engine test were estimated by the uncertainty analysis of the measurement values and the repeatability and reproducibility of the altitude test measurement were assessed by the analysis of variation on the repeated test data with different operator groups.

  • PDF

Analysis of Associated Factors for Aircraft Takeoff Weight Estimation (Based on B737-800) (항공기 이륙중량 추정을 위한 관련 요인 분석 (B737-800을 중심으로))

  • Seung-Pyo Lee;Sung-Kwan Ku
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.658-665
    • /
    • 2023
  • Take-off weight is a key factor for improving accuracy when estimating an aircraft's carbon emissions and fuel consumption. However, the takeoff weight contains sensitive payload information that can infer the airline's management strategy, making it impossible to leak it outside. Although several models for estimating takeoff weight have been presented in previous studies, the researcher points out that there are limitations of the study caused by variables at the pilot's discretion. In this paper, several variables related to takeoff weight are identified to suggest a way to control these limits. Among them, variables that can improve the accuracy of takeoff weight are selected and an estimation equation is presented by applying them to ADS-B information. The proposed estimation does not estimate the average takeoff weight but has the advantage of being able to estimate all ranges of the takeoff weight.