• Title/Summary/Keyword: Estimation of In situ Stress

Search Result 45, Processing Time 0.029 seconds

Foundation Analysis and Design Using CPT Results : Settlement Estimation of Shallow Foundation (CPT 결과를 이용한 기초해석 및 설계 : 얕은 기초의 침하량 산정)

  • 이준환;박동규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.5-14
    • /
    • 2004
  • The settlement of foundations under working load conditions is an important design consideration. Well-designed foundations induce stress-strain states in the soil that are neither in the linear elastic range nor in the range usually associated with perfect plasticity. Thus, in order to accurately predict working settlements, analyses that are more realistic than simple elastic analyses are required. The settlements of footings in sand are often estimated based on the results of in-situ tests, particularly the standard penetration test (SPT) and the cone penetration test (CPT). In this paper, we analyze the load-settlement response of vertically loaded footings placed in sands using both the finite element method with a non-linear stress-strain model and the conventional elastic approach. Based on these analyses, we propose a procedure for the estimation of footing settlement in sands based on CPT results.

Estimation for Primary Tunnel Lining Loads

  • Kim, Hak-Joon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1998.05a
    • /
    • pp.153-204
    • /
    • 1998
  • Prediction of lining loads due to tunnelling is one of the major issues to be addressed in the design of a tunnel. The objective of this study is to investigate rational and realistic design loads on tunnel linings. factors influencing the lining load are summarized and discussed. The instruments for measuring the lining loads are reviewed and discussed because field measurements are often necessary to verify the design methods. Tunnel construction in the City of Edmonton has been very active for storm and sanitary purposes. Since the early 1970's, the city has also been developing an underground Light Rail Transit system. The load measurements obtained from these tunnels are compared with the results from the existing design methods. However, none of the existing methods are totally satisfactory, Therefore, there is some room for improvement in the prediction of lining loads. The convergence-confinement method is reviewed and applied to a case history of a tunnel in Edmonton. The convergence curves are obtained from 2-D finite element analyses using three different material models and theoretical equations. The limitation of the convergence-confinement method is discussed by comparing these curves with the field measurements. Three-dimensional finite element analyses are performed to gain a better understanding of stress and displacement behaviour near the tunnel face. An improved design method is proposed based on the review of existing design methods and the performance of numerical analyses. A specific method or combination of two different methods is suggested for the estimation of lining loads for different conditions of tunnelling. A method to determine the stress reduction factor is described. Typical values of dimensionless load factors nD/H for tunnels in Edmonton are obtained from parametric analyses. Finally, the loads calculated using the proposed method are compared with field measurements collected from various tunnels in terms of soil types and construction methods to verify the method. The proposed method gives a reasonable approximation of the lining loads. The proposed method is recommended as an approximate guideline for the design of tunnels, but the results should be confirmed by field measurements due to the uncertainties of the ground and lining properties and the construction procedures, This is the reason that in-situ monitoring should be an integral part of the design procedure.

  • PDF

Approximate estimation of soil moisture from NDVI and Land Surface Temperature over Andong region, Korea

  • Kim, Hyunji;Ryu, Jae-Hyun;Seo, Min Ji;Lee, Chang Suk;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.3
    • /
    • pp.375-381
    • /
    • 2014
  • Soil moisture is an essential satellite-driven variable for understanding hydrologic, pedologic and geomorphic processes. The European Space Agency (ESA) has endorsed soil moisture as one of Climate Change Initiates (CCI) and had merged multi-satellites over 30 years. The $0.25^{\circ}$ coarse resolution soil moisture satellite data showed correlations with variables of a water stress index, Temperature-Vegetation Dryness Index (TVDI), from a stepwise regression analysis. The ancillary data from TVDI, Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI) from MODIS were inputted to a multi-regression analysis for estimating the surface soil moisture. The estimated soil moisture was validated with in-situ soil moisture data from April, 2012 to March, 2013 at Andong observation sites in South Korea. The soil moisture estimated using satellite-based LST and NDVI showed a good agreement with the observed ground data that this approach is plausible to define spatial distribution of surface soil moisture.

Bearing Capacity Evaluation of Marine Clay Dredged Deposit Including Desiccated Crust Layer (건조 고결층이 형성된 준설 매립 지반의 지지력 산정에 대한 연구)

  • Park, Hyun-Ku;Byeon, Wi-Yong;Jee, Sung-Hyun;Lee, Seung-Rae
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.89-100
    • /
    • 2007
  • In this study, various field and laboratory tests were performed to investigate the characteristics of shear strength and bearing behavior to be considered in the estimation of stability and trafficability in early stage of stabilization process in marine clay dredged deposit. Site characterization was carried out to grasp the basic properties of the deposit. Field vane test, unconfined compression test and direct shear test were conducted to evaluate the shear strength distribution for varied depths, and the characteristics of shear strength and stress-strain behavior of the crust layer. Plate load tests were also performed to estimate the bearing capacity and to assess load-settlement behavior and failure pattern of the deposit. The bearing capacity was also estimated using previously proposed methods for double-layered clay deposit. The estimated bearing capacity was compared with the results of the plate load tests and then, the applicability of the estimation method was discussed.

Estimation of Bending Fatigue Life of CWR in Concrete Track (콘크리트궤도 장대레일의 휨 피로수명 평가)

  • Sung, Deok-Yong;Tae, Sung-Sik;Park, Kwang-Hwa;Kong, Sun-Yong;Park, Yong-Gul
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.64-71
    • /
    • 2010
  • It is suggested that the service life of the continuous welded rail(CWR) is estimated by the relationship between the rail surface irregularity according to the accumulated passing tonnage and bending fatigue of welded part in CWR. In this study, based on the results of bending fatigue tests of rail and results of measuring tests in situ of rail bending stress, this study estimated the bending fatigue life of welded rail in concrete track, adopting a Haibach's rule. The bending fatigue life of CWR considered the rail surface irregularity, train speed and the S-N curve by types of rail welding. In addition, this study estimated it for the fracture probability 1%, 0.1%, 0.01%. Therefore, this study proposed bending fatigue life of CWR in concrete track.

  • PDF

An Evaluation of In-situ the Pullout Resistance of Chain Reinforcement (체인 보강재의 현장 인발저항력 평가)

  • Kim, Sang-Su;Yu, Chan;Lee, Bong-Jik;Shin, Bang-Woong
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.339-347
    • /
    • 2002
  • An in-situ experiment was performed to evaluate the pullout resistance capacity of chains which is used as a reinforcement of reinforced earth wall. It was also considered that chain was combined with a bar or L-type steel angle by the transverse reinforcement member in the experiment. About 80 pullout tests were peformed with varying the lengths of chain(2.0m, 2.5m, and 3.0m), the combination of each transverse members(chain only, chain+bar, or chain+angle), and the vertical placement of reinforcements. In the case that uses a chain only and a chain combined with bar, the maximum displacement was about 150mm and load continuously increased to the ultimate tensile strength of chain, and then tension failure of chains occurred. But in the case of a chain combined with angle, the displacement decreased to about 100mm and so it was expected that this combination can constrain the displacement of chain. On the other hand, comparing the yielding pullout load measured in the field to that calculated by theoretical equation, it is shown that measured values are 1.2~3.0 times greater than those of calculated values according to the length of chain, normal vertical stress, and the combination of chain with transverse members. However, the difference in the increment of yielding pullout load between bar and angle is not clear but it appears almost the same increment. It is expected that chain can be safely used as reinforcements of reinforced earth wall, although a theoretical estimation of the pullout resistance capability of chain is too conservative.

Estimation of Undrained Shear Strength for Clays Using Effective Cone Factor (유효콘계수를 이용한 포화점토의 비배수전단강도 평가)

  • Kim, Chang-Dong;Kim, Soo-Il;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.133-141
    • /
    • 2008
  • In this study, a new method for estimating the undrained shear strength $s_u$ of saturated clays using piezocone penetration test (CPTu) result is proposed. This is to develop more effective CPTu-based $s_u$ estimation method at lower cost with less uncertainty. For this purpose, a marine clay deposit is selected and tested through extensive experimental testing program including both in-situ and fundamental laboratory tests. The proposed method is based on a correlation between the undrained shear strength $s_u$ and the cone resistance $q_t$, without introduction of the total overburden stress into the $s_u-q_t$ correlation. As a result, no additional testing procedure for collecting undisturbed soils samples is required, which can reduce overall testing cost. To verify the proposed method, 4 test sites, which consist of a variety of soil conditions, are selected and used for comparison between measured and predicted undrained shear strength. From comparison, it is seen that predicted values of $s_u$ using the proposed method match well those from measured results.

Application of Flat DMT and ANN for Reliable Estimation of Undrained Shear Strength of Korean Soft Clay (국내 연약지반의 신뢰성있는 비배수 전단강도 추정을 위한 flat DMT와 인공신경망 이론의 적용)

  • 변위용;김영상;이승래;정은택
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.17-25
    • /
    • 2004
  • The flat dilatometer test (DMT) is a geotechnical tool to estimate in-situ properties of various types of ground materials. The undrained shear strength is known to be the most reliable and useful parameter obtained by DMT. However, the existing relationships which were established for other local deposits depend on the regional geotechnical characteristics. In addition, the flat dilatometer test results have been interpreted using three intermediate indices - material index $(I_D)$, horizontal stress index $(K_D)$, and dilatometer modulus (E$_{D}$) and the undrained shear strength has been estimated merely using the horizontal stress index $(K_D)$. In this paper, the applicability of the flat dilatometer to Korean soft clay deposit has been investigated. Then an artificial neural network was developed to evaluate the undrained shear strength by DMT and the ANN, based on the $p_0, p_1, p_2, {\sigma '}_v$ and porewater pressure. The ANN which adopts the back-propagation algorithm was trained based on the DMT data obtained from Korean soft clay. To investigate the feasibility of ANN model, the prediction results obtained from data which were not used to train the ANN and those obtained from existing relationships were compared.

Analysis on the TBM Penetration Rates in Extremely Hard Rocks (극경암에서의 전단면터널 굴착속도 분석연구)

  • Park, Chul-Whan;Synn, Joong-Ho;park, Chan;Kim, Min-Kyu;Chung, So-Keul;Kim, Hwa-Soo
    • Tunnel and Underground Space
    • /
    • v.10 no.4
    • /
    • pp.526-532
    • /
    • 2000
  • The uniaxial compressive strength of rock mass is known as the major factor in the assessment of drillability and the optimum excavation design in full-face tunnel excavation by TBM. Referring to worldwide cases, TBM has been applied mostly to the rock mass within the strength range of 80~250 MPa. Recently, a water way tunnel has been constructed as a part of Milyang dam project by TBM within the rock masses where the rock type is mainly granite with some granophyre, hornfels and andesite. Their uniaxial compressive strengths in extended area are estimated higher than 260 MPa. In this paper, the relation between the penetration rate and the rock mass properties is analyzed and TBM application to the very hard rocks is discussed. As a result that three suggestions to predict the TBM net penetration rate are analyzed, NTH method seems a better approach than other methods in the extremely hard rocks. NTH prediction matches with the results of actual values with the variations of 2~20%. Hardness measurement by Schmidt hammer and RMR estimation are carried out along the L = 5.3 km entire TBM tunnel alignment. The net penetration rate measured monthly is shown to be reciprocally proportional to Schmidt rebound hardness and RMR where coefficients of correlation, $R^2$are 0.705 and 0.777 respectively. As a result, they are good quantitative indices for the prediction of TBM net penetration rate in the extremely hard rocks. Magnitude of in-situ stress has a certain effect on TBM performance, and it is required to measure the in-situ stresses in TBM excavation design.

  • PDF

Estimation of Shaft Resistance of Drilled Shafts Based on Hoek-Brown Criterion (Hoek-Brown 공식을 이용한 현장타설말뚝의 주면마찰력 산정)

  • 사공명;백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.209-220
    • /
    • 2003
  • Modification of general Hoek and Brown criterion is carried out to estimate the shaft resistance of drilled shaft socketed into rock mass. Since the general Hoek-Brown criterion can consider the in-situ state of the rock mass, the proposed method, estimating the unit shaft resistance of drilled shafts based on the Hoek-Brown criterion, has increased flexibility compared to other methods exclusively considering uniaxial compressive strength of intact rocks. The proposed method can form the upper and lower bounds, and most culled data (from 21 pile load tests) from the literature can be found between these two bounds. A comparison between the estimated and observed unit shaft resistances shows quite a good correlation even with crude assumptions for the input parameters. The best-fit line drawn from this analysis shows that at the lower strength of intact rocks (up to 10MPa), Horvath and Kenney's equation shows a good correlation with the measured values, and fur strong rocks Rosenberg and Journeaux's equation provides a close estimation with colleted data. The results of parametric studies for GSI and confining stress show that the normalized unit shaft resistance increases with these two factors. In addition, coefficient of the equational form of the estimation can vary with GSI and confining stresses.