• Title/Summary/Keyword: Estimation Models

Search Result 2,840, Processing Time 0.031 seconds

Resonant Frequency Estimation of Reradiation Interference at MF from Power Transmission Lines Based on Generalized Resonance Theory

  • Bo, Tang;Bin, Chen;Zhibin, Zhao;Zheng, Xiao;Shuang, Wang
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1144-1153
    • /
    • 2015
  • The resonant mechanism of reradiation interference (RRI) over 1.7MHz from power transmission lines cannot be obtained from IEEE standards, which are based on researches of field intensity. Hence, the resonance is ignored in National Standards of protecting distance between UHV power lines and radio stations in China, which would result in an excessive redundancy of protecting distance. Therefore, based on the generalized resonance theory, we proposed the idea of applying model-based parameter estimation (MBPE) to estimate the generalized resonance frequency of electrically large scattering objects. We also deduced equation expressions of the generalized resonance frequency and its quality factor Q in a lossy open electromagnetic system, i.e. an antenna-transmission line system in this paper. Taking the frequency band studied by IEEE and the frequency band over 1.7 MHz as object, we established three models of the RRI from transmission lines, namely the simplified line model, the tower line model considering cross arms and the line-surface mixed model. With the models, we calculated the scattering field of sampling points with equal intervals using method of moments, and then inferred expressions of Padé rational function. After calculating the zero-pole points of the Padé rational function, we eventually got the estimation of the RRI’s generalized resonant frequency. Our case studies indicate that the proposed estimation method is effective for predicting the generalized resonant frequency of RRI in medium frequency (MF, 0.3~3 MHz) band over 1.7 MHz, which expands the frequency band studied by IEEE.

Development of Nonpoint Sources Runoff Load Estimation Model Equations for the Vineyard Area (포도밭에 대한 비점오염물질 유출량 추정 모델식 개발)

  • Yoon, Young-Sam;Kwon, Hun-Gak;Yi, Youn-Jung;Yu, Jay-Jung;Lee, Jae-Kwan
    • Journal of Environmental Science International
    • /
    • v.19 no.7
    • /
    • pp.907-915
    • /
    • 2010
  • Agriculture nonpoint pollution source is a significant contributor to water quality degradation. To establish effective water quality control policy, environpolitics establishment person must be able to estimate nonpoint source loads to lakes and streams. To meet this need for orchard area, we investigated a real rainfall runoff phenomena about it. We developed nonpoint source runoff estimation models for vineyard area that has lots of fertilizer, compost specially between agricultural areas. Data used in nonpoint source estimation model gained from real measuring runoff loads and it surveyed for two years(2008-2009 year) about vineyard. Nonpoint source runoff loads estimation models were composed of using independent variables(rainfall, storm duration time(SDT), antecedent dry weather period(ADWP), total runoff depth(TRD), average storm intensity(ASI), average runoff intensity(ARI)). Rainfall, total runoff depth and average runoff intensity among six independent variables were specially high related to nonpoint source runoff loads such as BOD, COD, TN, TP, TOC and SS. The best regression model to predict nonpoint source runoff load was Model 6 and regression factor of all water quality items except for was $R^2=0.85$.

A case study of small area estimation about charter and monthly rent price index (소지역모형 추정기법을 활용한 전·월세 추정)

  • Lee, Seung Soo;Park, Won Ran;Chung, Sung Suk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.327-337
    • /
    • 2017
  • In this study we compared three models for small area estimation, Fay-Herriot, Hierarchical Bayses model and spatio-temporal model about charter, monthly rent price index. Charter, monthly rent price of Korea are important issue in these days. Because housing type rapidly changes from self to charter and monthly rent. The accuracy of the estimation was checked on four scales, that is ARB, ASRB, AAB, ASD. In this result, the spatio-temporal model among applied models has most optimal scales about small area estimation of charter and monthly rent index.

An Improvement of Function Point Models for Software Cost Estimation (소프트웨어 비용산정을 위한 기능점수 모형 개선 연구)

  • Kim, Hyeon-Su
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.9
    • /
    • pp.2403-2413
    • /
    • 1999
  • There is a strong need to develop a software cost estimation model on economic value perspective. The objective of this research is to improve current software cost estimation method on economic value perspective. We reviewed domestic and foreign researches and practices on software cost estimation with function point method, and derived promising alternative models. Pilot simulation was performed with real project data, and the probable best model was chosen. We collected data from 39 Korean companies, and assesed statistical significance of the model with those data. Empirical data shows that more practical model has better prediction accuracy. That is, the number of input and output modules, the number of tables, and the number of algorithms are chosen to be best set of functions. There exists strong correlation between the calculated function points and project effort. And, the revised set of technical complexity factors and evaluation guidelines show practical usefulness. We suggest that the above result be incorporated in a new improved guideline for software cost estimation. By adopting the results of this research to the guideline, we expect that technology innovation will be expedited, and that overall productivity of software industry will be increased.

  • PDF

Deep Learning-Based Outlier Detection and Correction for 3D Pose Estimation (3차원 자세 추정을 위한 딥러닝 기반 이상치 검출 및 보정 기법)

  • Ju, Chan-Yang;Park, Ji-Sung;Lee, Dong-Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.10
    • /
    • pp.419-426
    • /
    • 2022
  • In this paper, we propose a method to improve the accuracy of 3D human pose estimation model in various move motions. Existing human pose estimation models have some problems of jitter, inversion, swap, miss that cause miss coordinates when estimating human poses. These problems cause low accuracy of pose estimation models to detect exact coordinates of human poses. We propose a method that consists of detection and correction methods to handle with these problems. Deep learning-based outlier detection method detects outlier of human pose coordinates in move motion effectively and rule-based correction method corrects the outlier according to a simple rule. We have shown that the proposed method is effective in various motions with the experiments using 2D golf swing motion data and have shown the possibility of expansion from 2D to 3D coordinates.

Estimation and Validation of the Leaf Areas of Five June-bearing Strawberry (Fragaria × ananassa) Cultivars using Non-destructive Methods (일계성 딸기 5품종의 비파괴적 방법을 사용한 엽면적 추정 및 검증)

  • Jo, Jung Su;Sim, Ha Seon;Jung, Soo Bin;Moon, Yu Hyun;Jo, Won Jun;Woo, Ui Jeong;Kim, Sung Kyeom
    • Journal of Bio-Environment Control
    • /
    • v.31 no.2
    • /
    • pp.98-103
    • /
    • 2022
  • Non-destructive estimation of leaf area is a more efficient and convenient method than leaf excision. Thus, several models predicting leaf area have been developed for various horticultural crops. However, there are limited studies on estimating the leaf area of strawberry plants. In this study, we predicted the leaf areas via nonlinear regression analysis using the leaf lengths and widths of three-compound leaves in five domestic strawberry cultivars ('Arihyang', 'Jukhyang', 'Keumsil', 'Maehyang', and 'Seollhyang'). The coefficient of determination (R2) between the actual and estimated leaf areas varied from 0.923 to 0.973. The R2 value varied for each cultivar; thus, leaf area estimation models must be developed for each cultivar. The leaf areas of the three cultivars 'Jukhyang', 'Seolhyang', and 'Maehyang' could be non-destructively predicted using the model developed in this study, as they had R2 values over 0.96. The cultivars 'Arihyang' and 'Geumsil' had slightly low R2 values, 0.938 and 0.923, respectively. The leaf area estimation model for each cultivar was coded in Python and is provided in this manuscript. The estimation models developed in this study could be used extensively in other strawberry-related studies.

Statistical Inference in Non-Identifiable and Singular Statistical Models

  • Amari, Shun-ichi;Amari, Shun-ichi;Tomoko Ozeki
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.2
    • /
    • pp.179-192
    • /
    • 2001
  • When a statistical model has a hierarchical structure such as multilayer perceptrons in neural networks or Gaussian mixture density representation, the model includes distribution with unidentifiable parameters when the structure becomes redundant. Since the exact structure is unknown, we need to carry out statistical estimation or learning of parameters in such a model. From the geometrical point of view, distributions specified by unidentifiable parameters become a singular point in the parameter space. The problem has been remarked in many statistical models, and strange behaviors of the likelihood ratio statistics, when the null hypothesis is at a singular point, have been analyzed so far. The present paper studies asymptotic behaviors of the maximum likelihood estimator and the Bayesian predictive estimator, by using a simple cone model, and show that they are completely different from regular statistical models where the Cramer-Rao paradigm holds. At singularities, the Fisher information metric degenerates, implying that the cramer-Rao paradigm does no more hold, and that he classical model selection theory such as AIC and MDL cannot be applied. This paper is a first step to establish a new theory for analyzing the accuracy of estimation or learning at around singularities.

  • PDF

Support Vector Machine for Interval Regression

  • Hong Dug Hun;Hwang Changha
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.67-72
    • /
    • 2004
  • Support vector machine (SVM) has been very successful in pattern recognition and function estimation problems for crisp data. This paper proposes a new method to evaluate interval linear and nonlinear regression models combining the possibility and necessity estimation formulation with the principle of SVM. For data sets with crisp inputs and interval outputs, the possibility and necessity models have been recently utilized, which are based on quadratic programming approach giving more diverse spread coefficients than a linear programming one. SVM also uses quadratic programming approach whose another advantage in interval regression analysis is to be able to integrate both the property of central tendency in least squares and the possibilistic property In fuzzy regression. However this is not a computationally expensive way. SVM allows us to perform interval nonlinear regression analysis by constructing an interval linear regression function in a high dimensional feature space. In particular, SVM is a very attractive approach to model nonlinear interval data. The proposed algorithm here is model-free method in the sense that we do not have to assume the underlying model function for interval nonlinear regression model with crisp inputs and interval output. Experimental results are then presented which indicate the performance of this algorithm.

  • PDF

Heritability Estimates under Single and Multi-Trait Animal Models in Murrah Buffaloes

  • Jain, A.;Sadana, D.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.5
    • /
    • pp.575-579
    • /
    • 2000
  • First lactation records of 683 Murrah buffaloes maintained at NDRI, Karnal which were progeny of 84 sires used for comparing the heritability estimates of age at first calving, first lactation milk yield and first service period under single and multiple trait models using restricted maximum likelihood (REML) method of estimation under an individual animal model. The results indicated that the heritability estimates may vary under single and multiple trait models depending upon the magnitude of genetic and environmental correlation among the traits being considered. Therefore, a single or multiple trait model is recommended for estimation of variance components depending upon the goal of breeding programme. However, there may not be any advantage of considering a trait with zero or near zero heritability and having no or very low genetic correlation with other traits in the model. Lower heritability estimates of part lactation yield (120-day milk yield) implied that there may not be any advantage of considering this trait in place of actual 305-day milk yield, whereas, comparable heritability estimates of predicted 305-day milk yield suggested that it could be used for sire evaluation to reduce the cost of milk recording under field conditions.

A new statistical approach for joint shear strength determination of RC beam-column connections subjected to lateral earthquake loading

  • Kim, Jaehong;LaFavet, James M.;Song, Junho
    • Structural Engineering and Mechanics
    • /
    • v.27 no.4
    • /
    • pp.439-456
    • /
    • 2007
  • Reinforced concrete (RC) joint shear strength models are constructed using an experimental database in conjunction with a Bayesian parameter estimation method. The experimental database consists of RC beam-column connection test subassemblies that maintained proper confinement within the joint panel. All included test subassemblies were subjected to quasi-static cyclic lateral loading and eventually experienced joint shear failure (either in conjunction with or without yielding of beam reinforcement); subassemblies with out-of-plane members and/or eccentricity between the beam(s) and the column are not included in this study. Three types of joint shear strength models are developed. The first model considers all possible influence parameters on joint shear strength. The second model contains those parameters left after a step-wise process that systematically identifies and removes the least important parameters affecting RC joint shear strength. The third model simplifies the second model for convenient application in practical design. All three models are unbiased and show similar levels of scatter. Finally, the improved performance of the simplified model for design is identified by comparison with the current ACI 352R-02 RC joint shear strength model.