• Title/Summary/Keyword: Estimation Errors

Search Result 1,460, Processing Time 0.034 seconds

A Study on Calculation of Sectional Travel Speeds of the Interrupted Traffic Flow with the Consideration of the Characteristics of Probe Data (프로브 자료의 특성을 고려한 단속류의 구간 통행속도 산출에 관한 연구)

  • Jeong, Yeon Tak;Jung, Hun Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1851-1861
    • /
    • 2014
  • This study aims to calculate reliable sectional travel speeds with the consideration of the characteristics of the probe data collected in the interrupted traffic flow. First, in order to analysis the characteristics of the probe data, we looked into the distribution of the sectional travel times of each probe vehicle and compared the difference in the sectional travel speeds of each probe vehicle collected by DSRC. As a result, it is shown that outliers should be removed for the distribution of the sectional travel times. However, The comparison results show that the sectional travel speeds from the DSRC probe vehicles are not significantly different. Finally, based on the distribution characteristics of the sectional travel speeds of each probe vehicle and the representative values counted during a collection period, we drew the optimal outlier removal procedure and evaluated the estimation errors. The evaluation results showed that the DSRC sectional travel speeds were found to be similar to the observed values from actually running vehicles. On the contrary, in the case of the sectional travel speeds of intra-city bus, it was analyzed that they were less accurate than the DSRC sectional travel speeds. In the future, it will be necessary to improve BIS process and make use of the travel information on intra-city buses collected in real time to find various ways of applying it as traffic information.

Weighted Census Transform and Guide Filtering based Depth Map Generation Method (가중치를 이용한 센서스 변환과 가이드 필터링 기반깊이지도 생성 방법)

  • Mun, Ji-Hun;Ho, Yo-Sung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.2
    • /
    • pp.92-98
    • /
    • 2017
  • Generally, image contains geometrical and radiometric errors. Census transform can solve the stereo mismatching problem caused by the radiometric distortion. Since the general census transform compares center of window pixel value with neighbor pixel value, it is hard to obtain an accurate matching result when the difference of pixel value is not large. To solve that problem, we propose a census transform method that applies different 4-step weight for each pixel value difference by applying an assistance window inside the window kernel. If the current pixel value is larger than the average of assistance window pixel value, a high weight value is given. Otherwise, a low weight value is assigned to perform a differential census transform. After generating an initial disparity map using a weighted census transform and input images, the gradient information is additionally used to model a cost function for generating a final disparity map. In order to find an optimal cost value, we use guided filtering. Since the filtering is performed using the input image and the disparity image, the object boundary region can be preserved. From the experimental results, we confirm that the performance of the proposed stereo matching method is improved compare to the conventional method.

Estimation of soil moisture based on sentinel-1 SAR data: focusing on cropland and grassland area (Sentienl-1 SAR 토양수분 산정 연구: 농지와 초지지역을 중심으로)

  • Cho, Seongkeun;Jeong, Jaehwan;Lee, Seulchan;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.11
    • /
    • pp.973-983
    • /
    • 2020
  • Recently, SAR (Synthetic Aperture Radar) is being highlighted as a solution to the coarse spatial resolution of remote sensing data in water resources research field. Spatial resolution up to 10 m of SAR backscattering coefficient has facilitated more elaborate analyses of the spatial distribution of soil moisture, compared to existing satellite-based coarse resolution (>10 km) soil moisture data. It is essential, however, to multilaterally analyze how various hydrological and environmental factors affect the backscattering coefficient, to utilize the data. In this study, soil moisture estimated by WCM (Water Cloud Model) and linear regression is compared with in-situ soil moisture data at 5 soil moisture observatories in the Korean peninsula. WCM shows suitable estimates for observing instant changes in soil moisture. However, it needs to be adjusted in terms of errors. Soil moisture estimated from linear regression shows a stable error range, but it cannot capture instant changes. The result also shows that the effect of soil moisture on backscattering coefficients differs greatly by land cover, distribution of vegetation, and water content of vegetation, hence that there're still limitations to apply preexisting models directly. Therefore, it is crucial to analyze variable effects from different environments and establish suitable soil moisture model, to apply SAR to water resources fields in Korea.

Conceptual Design of Automatic Control Algorithm for VMSs (VMS 자동제어 알고리즘 설계)

  • 박은미
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.7
    • /
    • pp.177-183
    • /
    • 2002
  • Current state-of-the-art of VMS control is based upon simple knowledge-based inference engine with message set and each message's priority. And R&Ds of the VMS control are focused on the accurate detection and estimation of traffic condition of the subject roadways. However VMS display itself cannot achieve a desirable traffic allocation among alternative routes in the network In this context, VMS display strategy is the most crucial part in the VMS control. VMS itself has several limitations in its nature. It is generally known that VMS causes overreaction and concentration problems, which may be more serious in urban network than highway network because diversion should be more easily made in urban network. A feedback control algorithm is proposed in this paper to address the above-mentioned issues. It is generally true that feedback control approach requires low computational effort and is less sensitive to models inaccuracy and disturbance uncertainties. Major features of the proposed algorithm are as follows: Firstly, a regulator is designed to attain system optimal traffic allocation among alternative routes for each VMS in the network. Secondly, strategic messages should be prepared to realize the desirable traffic allocation, that is, output of the above regulator. VMS display strategy module is designed in this context. To evaluate Probable control benefit and to detect logical errors of the Proposed feedback algorithm, a offline simulation test is performed using real network in Daejon, Korea.

A Review on Alkalinity Analysis Methods Suitable for Korean Groundwater (우리나라 지하수에 적합한 알칼리도 분석법에 대한 고찰)

  • Kim, Kangjoo;Hamm, Se-Yeong;Kim, Rak-Hyeon;Kim, Hyunkoo
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.509-520
    • /
    • 2018
  • Alkalinity is one of the basic variables, which determine geochemical characteristics of natural waters and participate in processes changing concentrations of various contaminants either directly or indirectly. However, not a few laboratories and researchers of Korea still use alkalinity-measurement methods not appropriate for groundwaters, and which becomes one of the major reasons for the poor ion balance errors of the geochemical analysis. This study was performed to review alkalinity-measurement methods, to discuss their advantages and disadvantages, and, thus, to help researchers and analytical specialists in analyzing alkalinity of groundwaters. The pH-titration-curve-inflection-point (PTC-IP) methods, which finds the alkalinity end point from the inflection point of the pH titration curve are revealed to be most accurate. Gran titration technique among them are likely to be most appropriate for accurate estimation of titrant volume to the end point. In contrast, other titration methods such as pH indicator method and pre-selected pH method, which are still commonly being used, are likely to cause erroneous results especially for groundwaters of low ionic strength and alkalinity.

Classical testing based on B-splines in functional linear models (함수형 선형모형에서의 B-스플라인에 기초한 검정)

  • Sohn, Jihoon;Lee, Eun Ryung
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.4
    • /
    • pp.607-618
    • /
    • 2019
  • A new and interesting task in statistics is to effectively analyze functional data that frequently comes from advances in modern science and technology in areas such as meteorology and biomedical sciences. Functional linear regression with scalar response is a popular functional data analysis technique and it is often a common problem to determine a functional association if a functional predictor variable affects the scalar response in the models. Recently, Kong et al. (Journal of Nonparametric Statistics, 28, 813-838, 2016) established classical testing methods for this based on functional principal component analysis (of the functional predictor), that is, the resulting eigenfunctions (as a basis). However, the eigenbasis functions are not generally suitable for regression purpose because they are only concerned with the variability of the functional predictor, not the functional association of interest in testing problems. Additionally, eigenfunctions are to be estimated from data so that estimation errors might be involved in the performance of testing procedures. To circumvent these issues, we propose a testing method based on fixed basis such as B-splines and show that it works well via simulations. It is also illustrated via simulated and real data examples that the proposed testing method provides more effective and intuitive results due to the localization properties of B-splines.

Development of Optimal Chlorination Model and Parameter Studies (최적 염소 소독 모형의 개발 및 파라미터 연구)

  • Kim, Joonhyun;Ahn, Sooyoung;Park, Minwoo
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.6
    • /
    • pp.403-413
    • /
    • 2020
  • A mathematical model comprised with eight simultaneous quasi-linear partial differential equations was suggested to provide optimal chlorination strategy. Upstream weighted finite element method was employed to construct multidimensional numerical code. The code was verified against measured concentrations in three type of reactors. Boundary conditions and reaction rate were calibrated for the sixteen cases of experimental results to regenerate the measured values. Eight reaction rate coefficients were estimated from the modeling result. The reaction rate coefficients were expressed in terms of pH and temperature. Automatic optimal algorithm was invented to estimate the reaction rate coefficients by minimizing the sum of squares of the numerical errors and combined with the model. In order to minimize the concentration of chlorine and pollutants at the final usage sites, a real-time predictive control system is imperative which can predict the water quality variables from the chlorine disinfection process at the water purification plant to the customer by means of a model and operate the disinfection process according to the influent water quality. This model can be used to build such a system in water treatment plants.

Considerations and Alternative Approaches to the Estimation of Local Abundance of Legally Protected Species, the Fiddler Crab, Austruca lactea (법정보호종, 흰발농게(Austruca lactea) 서식 개체수 추정에 대한 검토와 대안)

  • Yoo, Jae-Won;Kim, Chang-Soo;Park, Mi-Ra;Jeong, Su-Young;Lee, Chae-Lin;Kim, Sungtae;Ahn, Dong-Sik;Lee, Chang-Gun;Han, Donguk;Back, Yonghae;Park, Young Cheol
    • Journal of Wetlands Research
    • /
    • v.23 no.2
    • /
    • pp.122-132
    • /
    • 2021
  • We reviewed the methods employed in Korean tidal flat surveys to measure the local abundance of the endangered wildlife and marine protected species, the fiddler crab, Austruca lactea. A complete census for infinite population is impossible even in a limited habitat within a tidal flat, and density estimates from samples strongly vary due to diverse biological and ecological factors. The habitat boundaries and areas shift with periodicities or rhythmic activities of organisms as well as measurement errors. Hence the local abundance calculated from density and habitat areas should be regarded as transient. This conjecture was valid based on the spatio-temporal variations of the density averages, standard error ranges, and spatial distribution of the crab, A. lactea observed for 3 years (2015-2017) in Songdo tidal flat in Incheon. We proposed the potential habitat areas using the occurrence probability of 50% from logistic regression model, reflecting the importance of habitat conservation value as an alternative to local abundance. The spatial shape of potential habitat predicted from a generalized model would remain constant over time unless the species' critical environmental conditions change rapidly. The species-specific model is expected to be used for the introduction of desired species in future habitat restoration/creation projects.

Integrated calibration weighting using complex auxiliary information (통합 칼리브레이션 가중치 산출 비교연구)

  • Park, Inho;Kim, Sujin
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.3
    • /
    • pp.427-438
    • /
    • 2021
  • Two-stage sampling allows us to estimate population characteristics by both unit and cluster level together. Given a complex auxiliary information, integrated calibration weighting would better reflect the level-wise characteristics as well as multivariate characteristics between levels. This paper explored the integrated calibration weighting methods by Estevao and Särndal (2006) and Kim (2019) through a simulation study, where the efficiency of those weighting methods was compared using an artificial population data. Two weighting methods among others are shown efficient: single step calibration at the unit level with stacked individualized auxiliary information and iterative integrated calibration at each level. Under both methods, cluster calibrated weights are defined as the average of the calibrated weights of the unit(s) within cluster. Both were very good in terms of the goodness-of-fit of estimating the population totals of mutual auxiliary information between clusters and units, and showed small relative bias and relative mean square root errors for estimating the population totals of survey variables that are not included in calibration adjustments.

Research on Longitudinal Slope Estimation Using Digital Elevation Model (수치표고모델 정보를 활용한 도로 종단경사 산출 연구)

  • Han, Yohee;Jung, Yeonghun;Chun, Uibum;Kim, Youngchan;Park, Shin Hyoung
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.84-99
    • /
    • 2021
  • As the micro-mobility market grows, the demand for route guidance, that includes uphill information as well, is increasing. Since the climbing angle depends on the electric motor uesed, it is necessary to establish an uphill road DB according to the threshold standard. Although road alignment information is a very important element in the basic information of the roads, there is no information currently on the longitudinal slope in the road digital map. The High Definition(HD) map which is being built as a preparation for the era of autonomous vehicles has the altitude value, unlike the existing standard node link system. However, the HD map is very insufficient because it has the altitude value only for some sections of the road network. This paper, hence, intends to propose a method to generate the road longitudinal slope using currently available data. We developed a method of computing the longitudinal slope by combining the digital elevation model and the standard link system. After creating an altitude at the road link point divided by 4m based on the Seoul road network, we calculated individual slope per unit distance of the road. After designating a representative slope for each road link, we have extracted the very steep road that cannot be climbed with personal mobility and the slippery roads that cannot be used during heavy snowfall. We additionally described errors in the altitude values due to surrounding terrain and the issues related to the slope calculation method. In the future, we expect that the road longitudinal slope information will be used as basic data that can be used for various convergence analyses.