• Title/Summary/Keyword: Estimating procedure

Search Result 403, Processing Time 0.029 seconds

Estimation of Undrained Shear Strength for Clays Using Effective Cone Factor (유효콘계수를 이용한 포화점토의 비배수전단강도 평가)

  • Kim, Chang-Dong;Kim, Soo-Il;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.133-141
    • /
    • 2008
  • In this study, a new method for estimating the undrained shear strength $s_u$ of saturated clays using piezocone penetration test (CPTu) result is proposed. This is to develop more effective CPTu-based $s_u$ estimation method at lower cost with less uncertainty. For this purpose, a marine clay deposit is selected and tested through extensive experimental testing program including both in-situ and fundamental laboratory tests. The proposed method is based on a correlation between the undrained shear strength $s_u$ and the cone resistance $q_t$, without introduction of the total overburden stress into the $s_u-q_t$ correlation. As a result, no additional testing procedure for collecting undisturbed soils samples is required, which can reduce overall testing cost. To verify the proposed method, 4 test sites, which consist of a variety of soil conditions, are selected and used for comparison between measured and predicted undrained shear strength. From comparison, it is seen that predicted values of $s_u$ using the proposed method match well those from measured results.

Applicability of CPT-based Toe Bearing Capacity of PHC Driven Piles (PHC 항타말뚝에 대한 CPT 선단 지지력 산정식의 적용성)

  • Le, Chi Hung;Chung, Sung-Gyo;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.107-118
    • /
    • 2009
  • As CPT penetration tends to show a similar behavior to that of pile driving, a number of methods for estimating the toe bearing capacity of piles based on CPT data have been proposed. To evaluate the applicability of the methods in this country, a total of 172 dynamic load tests data on PHC piles and 82 CPT data at a site in the Nakdong River estuary were collected. A specific four-step procedure was adopted for the selection of the reliable data, and statistical techniques were then applied to the analysis of the applicability. The results indicated that among a total of 10 CPT-based methods applied, the best one is the Aoki method (1975), followed by the LCPC (1982), ICP (2005) methods and others.

Strengthening of prestressed girder-deck system with partially debonding strand by the use of CFRP or steel plates: Analytical investigation

  • Haoran Ni;Riliang Li;Riyad S. Aboutaha
    • Computers and Concrete
    • /
    • v.31 no.4
    • /
    • pp.349-358
    • /
    • 2023
  • This paper describes an in-depth analysis on flexural strength of a girder-deck system experiencing a strand debonding damage with various strengthening systems, based on finite element software ABAQUS. A detailed finite element analysis (FEA) model was developed and verified against the relevant experimental data performed by other researchers. The proposed analytical model showed a good agreement with experimental data. Based on the verified FE model, over a hundred girder-deck systems were investigated with the consideration of following variables: 1) debonding level, 2) span-to-depth ratio (L/d), 3) strengthening type, 4) strengthening material thickness. Based on the data above, a new detailed analytical model was developed and proposed for estimating residual flexural strength of the strand-debonding damaged girder-deck system with strengthening systems. It was demonstrated that both finite element model and analysis model could be used to predict flexural behaviors for debonding damaged prestressed girder-deck systems. Since the strands are debonding from surrounding concrete over a certain zone over the length of the beam, the increase of strain in strands can be linked with a ratio ψ, which is Lp/c. The analytical model was proposed and developed regarding the ratio ψ. By conducting procedure of calculating ψ, the ψ value varies from 9.3 to 70.1. Multiple nonlinear regression analysis was performed in Software IBM SPSS Statistics 27.0.1 to derive equation of ψ. ψ equation was curved to be an exponential function, and the independent variable (X) is a linear function in terms of three variables of debonding level (λ), span length (L), and amount of strengthening material (As). The coefficient of determinate (R2) for curve fitting in nonlinear regression analysis is 0.8768. The developed analytical model was compared to the ultimate capacities computed by FEA model.

Revisiting the Z-R Relationship Using Long-term Radar Reflectivity over the Entire South Korea Region in a Bayesian Perspective

  • Kim, Tae-Jeong;Kim, Jin-Guk;Kim, Ho Jun;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.275-275
    • /
    • 2021
  • A fixed Z-R relationship approach, such as the Marshall-Palmer relationship, for an entire year and for different seasons can be problematic in cases where the relationship varies spatially and temporally throughout a region. From this perspective, this study explores the use of long-term radar reflectivity for South Korea to obtain a nationwide calibrated Z-R relationship and the associated uncertainties within a Bayesian regression framework. This study also investigates seasonal differences in the Z-R relationship and their roles in reducing systematic error. Distinct differences in the Z-R parameters in space are identified, and more importantly, an inverse relationship between the parameters is clearly identified with distinct regimes based on the seasons. A spatially structured pattern in the parameters exists, particularly parameter α for the wet season and parameter β for the dry season. A pronounced region of high values during the wet and dry seasons may be partially associated with storm movements in that season. Finally, the radar rainfall estimates through the calibrated Z-R relationship are compared with the existing Z-R relationships for estimating stratiform rainfall and convective rainfall. Overall, the radar rainfall fields based on the proposed modeling procedure are similar to the observed rainfall fields, whereas the radar rainfall fields obtained from the existing Marshall-Palmer Z-R relationship show a systematic underestimation. The obtained Z-R relationships are validated by testing the predictions on unseen radar-gauge pairs in the year 2018, in the context of cross-validation. The cross-validation results are largely similar to those in the calibration process, suggesting that the derived Z-R relationships fit the radar-gauge pairs reasonably well.

  • PDF

Applying the ANFIS to the Analysis of Rain and Dark Effects on the Saturation Headways at Signalized Intersections (강우 및 밝기에 따른 신호교차로 포화차두시간 분석에의 적응 뉴로-퍼지 적용)

  • Kim, Kyung Whan;Chung, Jae Whan;Kim, Daehyon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.573-580
    • /
    • 2006
  • The Saturation headway is a major parameter in estimating the intersection capacity and setting the signal timing. But Existing algorithms are still far from being robust in dealing with factors related to the variation of saturation headways at signalized intersections. So this study apply the fuzzy inference system using ANFIS. The ANFIS provides a method for the fuzzy modeling procedure to learn information about a data set, in order to compute the membership function parameters that best allow the associated fuzzy inference system to track the given input/output data. The climate conditions and the degree of brightness were chosen as the input variables when the rate of heavy vehicles is 10-25 %. These factors have the uncertain nature in quantification, which is the reason why these are chosen as the fuzzy variables. A neuro-fuzzy inference model to estimate saturation headways at signalized intersections was constructed in this study. Evaluating the model using the statistics of $R^2$, MAE and MSE, it was shown that the explainability of the model was very high, the values of the statistics being 0.993, 0.0289, 0.0173 respectively.

Load Recovery Using D-Optimal Sensor Placement and Full-Field Expansion Method (D-최적 실험 설계 기반 최적 센서 배치 및 모델 확장 기법을 이용한 하중 추정)

  • Seong-Ju Byun;Seung-Jae Lee;Seung-Hwan Boo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.2
    • /
    • pp.115-124
    • /
    • 2024
  • To detect and prevent structural damage caused by various loads on marine structures and ships, structural health monitoring procedure is essential. Estimating loads acting on the structures which are measured by sensors that are mounted properly are crucial for structural health monitoring. However, attaching an excessive number of sensors to the structure without consideration can be inefficient due to the high costs involved and the potential for inducing structural instability. In this study, we introduce a method to determine the optimal number of sensors and their optimized locations for strain measurement sensors, allowing for accurate load estimation throughout the structure using model expansion method. To estimate the loads exerted on the entire structure with minimal sensors, we construct a strain-load interpolation matrix using the strain mode shapes of the finite element (FE) model and select the optimal sensor locations by applying D-Optimal Design and the row exchange algorithm. Finally, we estimate the loads exerted on the entire structure using the model expansion method. To validate the proposed method, we compare the results obtained by applying the optimal sensor placement and model expansion method to an FE model subjected to arbitrary loads with the loads exerted on the entire FE model, demonstrating efficiency and accuracy.

Real-time 14N NQR-based sodium nitrite analysis in a noisy field

  • Mohammad Saleh Sharifi;Ho Seung Song;Hossein Afarideh;Mitra Ghergherehchi;Mehdi Simiari
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4570-4575
    • /
    • 2023
  • Noise and Radio-frequency interference or RFI causes a significant restriction on the Free induction Decay or FID signal detection of the Nuclear Quadrupole Resonance procedure. Therefore, using this method in non-isolated environments such as industry and ports requires extraordinary measures. For this purpose, noise reduction algorithms and increasing signal-to-noise-and-interference ratio or SNIR have been used. In this research, sodium nitrite has been used as a sample and algorithms have been tested in a non-isolated environment. The resonant frequencies for the 150 g of test sample were measured at 303 K at about 1 MHz and 3.4 MHz. The main novelty in this study was, (1) using two types of antennas in the receiver to improve adaptive noise and interference cancellation, (2) using a separate helical antenna in the transmitter to eliminate the duplexer, (3) estimating the noise before sending the pulse to calculate the weighting factors and reduce the noise by adaptive noise cancellation, (3) reject the interference by blanking algorithm, (4) pulse integration in the frequency domain to increase the SNR, and (5) increasing the detection speed by new pulse integration technique. By interference rejection and noise cancellation, the SNIR is improved to 9.24 dB at 1 MHz and to 7.28 dB at 3.4 MHz, and by pulse integration 44.8 dB FID signal amplification is achieved, and the FID signals are detected at 1.057 MHz and 3.402 MHz at room temperature.

The Appropriateness of Probabilistic Rainfall of Disaster Impact Assessment System in Jeju Island (재해영향평가 적용 확률강우량의 적정성에 관한 연구 (제주도를 중심으로))

  • Hong-Jun Jo;Seung-Hyun Kim;Kwon-Moon Ko;Dong-Wook Lee
    • Ecology and Resilient Infrastructure
    • /
    • v.11 no.2
    • /
    • pp.55-64
    • /
    • 2024
  • The disaster impact assessment system was introduced in 2005 as a disaster prevention procedure for comprehensive and systematic developmental projects. However, according to the 'Practical Guidelines for Disaster Impact Assessment', Jeju Island's unique hydrogeological features necessitate the calculation of isohyetal-based probabilistic rainfall, which can reflect altitude, when estimating probabilistic rainfall for flood volume determination, rather than using conventional methods. Despite Jeju Island being centered around Hallasan, there are three Automatic Weather Stations (AWS) located at the summit of Hallasan, making weather stations denser than in other cities and provinces. Therefore, it is judged that there would be no difficulty in applying conventional methods, such as utilizing the probabilistic rainfall data from the weather stations or employing the Thiessen method, to estimate flood volumes for small-scale project areas. Accordingly, this study conducts a comparative analysis of the impact of applying general probabilistic rainfall from weather stations and isohyetal-based probabilistic rainfall in site in the context of Jeju Island's disaster impact assessment system.

An Empircal Model of Effective Path Length for Rain Attenuation Prediction (강우감쇠 유효경로 길이 예측을 위한 경험 모델)

  • 이주환;최용석;박동철
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.5
    • /
    • pp.813-821
    • /
    • 2000
  • The engineering of satellite communication systems at frequencies above 10GHz requires a method for estimating rain-caused outage probabilities on the earth-satellite path. A procedure for predicting a rain attenuation distribution from a point rainfall rate distribution is, therefore, needed. In order to predict rain attenuation on the satellite link, several prediction models such as ITU-R, Global, SAM, DAH model, have been developed and used at a particular propagation condition, they may not be appropriate to a propagation condition in Korean territory. In this paper, a new rain attenuation prediction method appropriate to a propagation condition in Korea is introduced. Based on the results from ETRI measurements, a new method has been derived for an empirical approach with an identification on the horizontal correction factor as in current ITU-R method, and the vertical correction factor has been suggested with decreasing power law as a function of rainfall rate. This proposed model uses the entire rainfall rate distribution as input to the model, while the ITU-R and DAH model approaches only use a single 0.01% annual rainfall rate and assume that the attenuation at other probability levels can be determined from that single point distribution. This new model was compared with several world-wide prediction models. Based on the analysis, we can easily know the importance of the model choice to predict rain attenuation for a particular location in the radio communication system design.

  • PDF

A Study on Decision of Cut Rock Slope Angle Applied Shear Strength of Continuum Rock Mass Induced from Hoek-Brown Failure Criterion (Hoek-Brown 파괴기준에서 유도된 연속체암반의 전단강도를 적용한 깎기 암반사면 경사 결정 연구)

  • Kim, Hyungmin;Lee, Byokkyu;Woo, Jaegyung;Hur, Ik;Lee, Junki;Lee, Sugon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.13-21
    • /
    • 2019
  • There are many cuts or natural rock slopes that remain stable for a long time in the natural environment with steep slopes ($65^{\circ}$ to $85^{\circ}$). In terms of design practice, the rock mass consisting of similar rock condition and geological structures is defined as a good continuum rock slope, and during the process of decision making angle of this rock slope, it will be important to establish the geotechnical properties estimating method of the continuum rock on the process of stability analysis in the early stages of design and construction. In this study, the stability analysis of a good continuum rock slope that can be designed as a steep slope proposed a practical method of estimating the shear strength by induced from the Hoek-Brown failure criterion, and in addition, the design applicability was evaluated through the stability analysis of steep rock slope. The existing method of estimating the shear strength was inadequate for practical use in the design, as the equivalent M-C shear strength corresponding to the H-B envelope changes sensitively, even with small variations in confining stress. To compensate for this problem, it was proposed to estimate equivalent M-C shear strength by iso-angle division method. To verify the design applicability of the iso-angle division method, the results of the safety factor and the displacement according to the change in angle of the cut slope constructed at the existing working design site were reviewed. The safety factor is FS=16~59 on the 1:0.5 slope, FS=12~52 on the 1:0.3 slope, most of which show a 10~12 percent reduction. Displacement is 0.126 to 0.975 mm on the 1:0.5 slope, 0.152 to 1.158 mm on the 1:0.3 slope, and represents an increase of 10 to 15%. This is a slightly change in normal proportion and is in good condition in terms of stability. In terms practical the working design, it was confirmed that applying the shear strength estimated by Iso-angle division method derived from the H-B failure criterion as a universal shear strength for a good continuum rock mass slope was also able to produce stable and economic results. The procedure for stability analysis using LEM (Limit Equilibrium Analysis Method) and FEM (Finite Element Analysis Method) will also be practical in the rock slope where is not distributed fault. The study was conducted by selecting the slope of study area as a good rock condition, establishing a verification for which it can be applied universal to a various rock conditions will be a research subject later on.