• Title/Summary/Keyword: Estimated exposure level

Search Result 222, Processing Time 0.029 seconds

Exposure Monitoring of Nonylphenol in Preterm Breast milk in Seoulers (서울 거주 산모의 초유 중 노닐페놀 분석을 통한 인체노출평가)

  • Yi, Bit-Na;Kim, Chang-Sung;Park, Mi-Jung;Han, Yu-Sok;Lee, So-Jung;Yan, Mi-Hi
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.2
    • /
    • pp.113-117
    • /
    • 2008
  • Biomonitoring of nonylphenol (NP), an endocrine disrupting chemical, is required in Korea to perform its proper regulation. Thus, we analyzed exposure levels of nonlyphenol (NP) in breast milk from the mothers who delivered babies within 10 days (N=325). We analyzed free and total forms of NP in breast milk with LC/MS/MS (LOD, 0.5 ppb). In addition, we obtained questionnaires concerning lifestyle from the subject. As results, ranges of total NP were ${\mu}g/L$ (median, $3.51{\pm}4.98{\mu}g/L$ vs. normal, N=281, $2.07{\pm}3.76{\mu}g/L$; p<0.05). In conclusion, we suggest that exposure monitoring of NP should be continuously performed, even though the risks of NP are not clear, yet.

Association between Soil Contamination and Blood Lead Exposure Level in Areas around Abandoned Metal Mines (폐금속광산지역 토양오염정도와 혈 중 납 노출 수준의 상관성)

  • Seo, Jeong-Wook;Park, Jung-Duck;Eom, Sang-Yong;Kwon, Hee-Won;Ock, Minsu;Lee, Jiho
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.4
    • /
    • pp.227-235
    • /
    • 2022
  • Background: Abandoned metal mines are classified as vulnerable areas with the highest level of soil contamination among risk regions. People living near abandoned metal mines are at increased risk of exposure to toxic metals. Objectives: This study aimed to evaluate the correlation between soil contamination levels in areas around abandoned metal mine and the blood lead levels of local residents. Moreover, we assess the possibility of using soil contamination levels as a predictive indicator for human exposure level. Methods: Data from the Survey of Residents around Abandoned Metal Mines (2013~2017, n=4,421) and Investigation of Soil Pollution in Abandoned Metal Mines (2000~2011) were used. A random coefficient model was conducted for estimation of the lower level (micro data) of the local resident unit and the upper level (macro data) of the abandoned metal mine unit. Through a fitted model, the variation of blood lead levels among abandoned metal mines was confirmed and the effect of the operationally defined soil contamination level was estimated. Results: Among the total variation in blood lead levels, the variation between abandoned mines was 18.6%, and the variation determined by the upper-level factors such as soil contamination and water contamination was 8.1%, which was statistically significant respectively. There was also a statistically significant difference in the least square mean of blood lead concentration according to the level of soil contamination (p=0.047, low: 2.32 ㎍/dL, middle: 2.38 ㎍/dL, high: 2.59 ㎍/dL). Conclusions: The blood lead concentration of residents living near abandoned metal mines was significantly correlated with the level of soil contamination. Therefore, in biomonitoring for vulnerable areas, operationally defined soil contamination can be used as a predictor for human exposure level to hazardous substances and discrimination of high-risk abandoned metal mines.

Existing Population Exposure Assessment Using PM2.5 Concentration and the Geographic Information System (지리정보시스템(GIS) 및 존재인구를 이용한 초미세먼지(PM2.5) 노출평가)

  • Jaemin, Woo;Gihong, Min;Dongjun, Kim;Mansu, Cho;Kyeonghwa, Sung;Jungil, Won;Chaekwan, Lee;Jihun, Shin;Wonho, Yang
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.6
    • /
    • pp.298-305
    • /
    • 2022
  • Background: The concentration of air pollutants as measured by the Air Quality Monitoring System (AQMS) is not an accurate population exposure level since actual human activities and temporal and spatial variability need to be considered. Therefore, to increase the accuracy of exposure assessment, the population should be considered. However, it is difficult to obtain population data due to limitations such as personal information. Objectives: The existing population defined in this study is the number of people in each region's grid. The purpose is to provide a methodology for evaluating exposure to PM2.5 through existing population data provided by the National Geographic Information Institute. Methods: The selected study period was from October 26 to October 28, 2021. Using PM2.5 concentration data measured at the Sensor-based Air Monitoring Station (SAMS) installed in Guro-gu and Wonju-si, the concentration for each grid was estimated by applying inverse distance weights through QGIS version 3.22. Considering the existing population, population-weighted average concentration (PWAC) was calculated and the exposure level of the population was compared by region. Results: The outdoor PM2.5 concentration as measured through the SAMS was high in Wonju-si on all three days. Wonju-si showed an average 22% higher PWAC than Guro-gu. As a result of comparing the PWAC and outdoor PM2.5 concentration by region, the PWAC in Guro-gu was 1~2% higher than the observed value, but it was almost the same. Conversely, observations of Wonju-si were 10.1%, 11.3%, and 8.2% higher than PWAC. Conclusions: It is expected that the Geographic Information System (GIS) method and the existing population will be used to evaluate the exposure level of a population with a narrow activity radius in further research. In addition, based on this study, it is judged that research on exposure to environmental pollutants and risk assessment methods should be expanded.

Estimation of Daily Exposure to 3-Monochloropropane-1,2-diol from Commercial Soy Sauces in Korea

  • Kim, Hyun-Jung;Ha, Jae-Ho;Chun, Hyang-Sook;Cho, Eun-Jung
    • Food Science and Biotechnology
    • /
    • v.15 no.5
    • /
    • pp.768-772
    • /
    • 2006
  • To assess the dietary exposure to 3-monochloropropane-1,2-diol (3-MCPD) from soy sauces, the levels of 3-MCPD in commercial soy sauces were analyzed with gas chromatography/mass spectrometry. Sixty nine out of the 72 soy sauces tested contained a level of 3-MCPD below $0.3\;{\mu}g/g$, the maximum limit in Korea. The average concentration of the 72 samples was $0.080\;{\mu}g/g$ and the highest concentration was $3.131\;{\mu}g/g$. On the basis of the consumption data, 3-MCPD concentration and body weight, the estimated daily exposures to 3-MCPD were ranged from 0.037 to $0.146\;{\mu}g/kg$ body weight (bw)/day for 95th percentile exposed population groups. Our estimated daily exposures are significantly lower than the provisional maximum tolerable daily intake (PMTDI) of $2\;{\mu}g/kg$ bw/day, which was established by the Joint Food and Agriculture Organization/World Health Organization Expert Committee on Food Additives (JECFA).

Accelerated Life Test of Knife Protection Fabrics for Cut Resistance (절단 방지용 방검소재의 가속수명시험)

  • Chang, Gap-Shik;Jung, Ye-Lee;Jeon, Byong-Dae
    • Journal of Applied Reliability
    • /
    • v.15 no.4
    • /
    • pp.270-275
    • /
    • 2015
  • Purpose : UHMWPE (Ultra-high-molecular-weight-polyethylene) is one of the most widely used material in knife protection clothes because of high strength, elasticity, and light weight. The purpose of this study is to develop the accelerated life test method and predict the lifetime for the knife protection fabric composed by UHMWPE. Methods : In this study, degradation characteristics of UHMWPE fibers and knife protection fabric for cut resistance were evaluated under the hydrolysis and photo-degradation conditions. It was found out that the degradation rate of retained tensile strength was more significant in the photo-degradation than hydrolysis. Therefore, the failure time was determined as the time that the retained tensile strength in photo-degradation is less than 50%. Considering an acceleration factor for irradiance and exposure time, the lifetime was predicted from the calculated failure time. Results : As a result of the accelerated life test, the $B_{10}$ lifetime of knife protection fabric composed by UHMWPE fibers is estimated as 2.8 years for a 90% statistical confidence level. Conclusion: Since the lifetime is predicted by the view-point of radiant exposure in this study, there is a possibility that the estimated lifetime may differ from the actual lifetime. However, it is considered as an useful methodology to estimate the long-term lifetime of knife protection fabrics.

Radiation Exposure Reduction in APR1400

  • Bae, C.J.;Hwang, H.R.;Matteson, D.M.
    • Journal of Radiation Protection and Research
    • /
    • v.28 no.2
    • /
    • pp.127-135
    • /
    • 2003
  • The primary contributors to the total occupational radiation exposure in operating nuclear power plants are operation and maintenance activities doting refueling outages. The Advanced Power Reactor 1400 (APR1400) includes a number of design improvements and plans to utilize advanced maintenance methods and robotics to minimize the annual collective dose. The major radiation exposure reduction features implemented in APR1400 are a permanent refueling pool seal, quick opening transfer tube blind flange, improved hydrogen peroxide injection at shutdown, improved permanent steam generator work platforms, and more effective temporary shielding. The estimated average annual occupational radiation exposure for APR1400 based on the reference plant experience and an engineering judgment is determined to be in the order of 0.4 man-Sv, which is well within the design goal of 1 man-Sv. The basis of this average annual occupational radiation exposure estimation is an eighteen (18) month fuel cycle with maintenance performed to steam generators and reactor coolant pumps during refueling outage. The outage duration is assumed to be 28 days. The outage work is to be performed on a 24 hour per day basis, seven (7) days a week with overlapping twelve (12) hour work shifts. The occupational radiation exposure for APR1400 is also determined by an alternate method which consists of estimating radiation exposures expected for the major activities during the refueling outage. The major outage activities that cause the majority of the total radiation exposure during refueling outage such as fuel handling, reactor coolant pump maintenance, steam generator inspection and maintenance, reactor vessel head area maintenance, decontamination, and ICI & instrumentation maintenance activities are evaluated at a task level. The calculated value using this method is in close agreement with the value of 0.4 man-Sv, that has been determined based on the experience aid engineering judgement. Therefore, with the As Low As Reasonably Achievable (ALARA) advanced design features incorporated in the design, APR1400 design is to meet its design goal with sufficient margin, that is, more than a factor of two (2), if operated on art eighteen (18) month fuel cycle.

Evaluation of Hand-Arm Vibration Exposure Level and Work Environment Satisfaction of Workers in Automobile Manufacturer Assembly Process (자동차 제조업체 조립공정 근로자의 국소진동 노출 수준 및 작업환경 만족도 평가)

  • Seong-Hyun Park;Mo-Yeol Kang;Seung Won Kim;Sangjun Choi
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.2
    • /
    • pp.103-114
    • /
    • 2023
  • Objectives: This study was conducted to evaluate hand-arm vibration (HAV) exposure levels due to the use of power hand tools and to evaluate the determinants in the automobile assembly process. Methods: The exposure level to HAV was evaluated for 30 work lines in five assembly processes (body, engine, chassis, door, and design) that use air-powered tools and battery-powered tools and operate in circulation for two hours. The 2-hr equivalent energy vibration acceleration, A (2), of the task was measured. The 8-hr equivalent energy vibration acceleration, A (8), was estimated in consideration of the number of tasks that can be performed per day by each process. In addition, a survey on the working environment was conducted with workers exposed to vibration. Results: The geometric mean of the HAV exposure level, A (2), for a total of 30 tasks was 2.51 m/s2, and one case was 10.30 m/s2, exceeding TLV (2hr). The HAV exposure level of A (8) was evaluated from 1.03 m/s2 to 5.36 m/s2. A (2) showed a statistically significant difference (P<0.01) for each process, and the chassis process (GM=3.90 m/s2) was the highest. The larger the tool size and the longer the tool length, the higher was the vibration acceleration when using a battery-powered tool than an air-powered tool (P<0.01). Battery-powered tool users showed higher dissatisfaction on all items than did air-powered tool users. Conclusions: As a result of this study, it is necessary to implement a program to reduce the HAV exposure levels.

Health Risk Assessment of Occupants in the Small-Scale Public Facilites for Aldehydes and VOCs (일부 미적용 다중이용시설의 실내 공기 중 알데히드류 및 휘발성유기화합물 노출로 인한 건강위해성 평가)

  • Yang, Ji-Yeon; Kim, Ho-Hyun;Shin, Dong-Chun;Kim, Yoon-Shin;Sohn, Jong-Ryeul;Lim, Jun-Hwan;Lim, Young-Wook
    • Journal of Environmental Science International
    • /
    • v.17 no.1
    • /
    • pp.45-56
    • /
    • 2008
  • This study was to assess the lifetime cancer and non-cancer risk of exposure of worker and user at public facilities in Korea to volatile organic compounds (VOCs). We measured the concentrations of two aldehydes and five VOCs in indoor air at 424 public buildings that 8 kinds of public facilities (70 movie theaters, 86 offices, 86 restaurants, 70 academies, 22 auditoriums, 30 PC-rooms, 30 singing-rooms and 30 bars) all over the country. There were estimated the human exposure dose and risks with averages of the using-time and frequency for facility users and office workers, respectively. Carcinogens (formaldehyde, acetaldehyde, and benzene) were estimated the lifetime excess cancer risks (ECRs). non-carcinogens (toluene, ethylbenzene, xylene, and styrene) were estimated the hazard quotients (HQs). The average ECRs of formaldehyde and benzene for facility worker and user were $1{\times}10^{-3}{\sim}1{\times}10^{-4}\;and\;1{\times}10^{-4}{\sim}1{\times}10^{-5}$ level, respectively, in all facilities. HQs of four non-carcinogens did not exceed 1.0 for all subjects in all facilities. The estimated ECRs for restaurant and auditorium were the highest, and the PC-room and bar were the next higher facilities. Furthermore, people in a smoking facility had the highest cancer risk. Higher ECRs of formaldehyde and benzene were observed in indoor smoking facilities such as restaurant and auditorium. Higher HQs of toluene and xylene were observed at the restaurant and office building.

Use of Nitrogen Dioxide as Exposure Marker of Passive Smiking for Non-smoking Service-workers at Restaurants (음식점 비흡연 종업원의 간접흡연 노출량 지표로써 이산화질소 이용)

  • Won-Ho Yang;Young-Lim Kho;In-Kyu(Paul) Han;Chong-Min Lee;Moon-Shik Zong;Moon-Ho Chung
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.3
    • /
    • pp.1-7
    • /
    • 2000
  • There is increasing evidence suggestion that passive smoking increases the risk of lung cancer and other disease, though the potential health effects of exposure to environmental tobacco smoke (ETS) is a controversial subject. Since smoking in restaurant is prevalent in Korea, the concern on passive smoking exposure of non-smoking service-workers has been requested. ETS exposure of non-smoking service-workers at restaurant was assessed because they hare spent their times in restaurant indoors. The purpose of this study was feasibility of nitrogen dioxide($NO_2$) as exposure marker of ETS. The results of the study were as follows; 1. Average $NO_2$ concentrations in indoor and outdoor t restaurants were 57.1ppb(${\pm}12.4$) and 54.29ppb(${\pm}9.54$), respectively. Comparing office-workers, service-workers at restaurants were exposured highly. 2. The personal $NO_2$ measurement as exposure marker of ETS could cause the exposure error because $NO_2$ can be generated by combustion appliances in indoor. 3. Service-workers spent their most time(86.6%) in indoor. Mean time spent at restaurant indoors and at home was 9.4 hours and 10.9 hours, respectively. 4. Personal $NO_2$ levels correlated with indoor $NO_2$ concentrations of restaurant (r=0.70) and of their home (r=0.52) rather than of outdoor $NO_2$ concentration of restaurant (r=0.35). The cause of personal $NO_2$ exposure of non-smoking service-workers were considered as smoking of guests and combustion appliance indoors. 5. personal $NO_2$ exposures were estimated using Monte-Carlo simulation and time-weighted model. Estimated personal $NO_2$ level was 47.25ppb(${\pm}8.3$).

  • PDF

A Preliminary Study on the Evaluation of Internal Exposure Effect by Radioactive Aerosol Generated During Decommissioning of NPPs by Using BiDAS (BiDAS를 적용한 원전 해체 공정 시 발생되는 방사성 에어로졸의 내부피폭 영향평가 사전 연구)

  • Song, Jong Soon;Lee, Hak Yun;Kim, Sun Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.4
    • /
    • pp.473-478
    • /
    • 2018
  • Radioactive aerosol generated in cutting and melting work during the NPP decommissioning process can cause internal exposure to body through workers' breath. Thus, it is necessary to assess worker internal exposure due to the radioactive aerosol during decommissioning. The actually measured value of the working environment is needed for accurate assessment of internal exposure, but if it is difficult to actually measure that value, the internal exposure dose can be estimated through recommended values such as the fraction of amount of intake and the size of particles suggested by the International Committee on Radiological Protection (ICRP). As for the selection of particle size, this study applied a value of $5{\mu}m$, which is the size of particles considering the worker recommended by the ICRP. As for the amount of generation, the amount of intake was estimated using data on the mass of aerosol generated in a melting facility at a site in Kozloduy, Bulgaria. In addition, using these data, this study calculated the level of radioactivity in the worker's body and stool and conducted an assessment of internal exposure using the BiDAS computer code. The internal exposure dose of Type M was 0.0341 mSv, that of Type S was 0.0909 mSv. The two types of absorption showed levels that were 0.17% and 0.45% of the domestic annual dose limit, respectively.