• Title/Summary/Keyword: Estimated Radiation dose

Search Result 271, Processing Time 0.028 seconds

Preliminary Analysis of Dose Rate Variation on the Containment Building Wall of Dry Interim Storage Facilities for PWR Spent Nuclear Fuel (경수로 사용후핵연료 건식 중간저장시설의 격납건물 크기에 따른 건물 벽면에서의 방사선량률 추이 예비 분석)

  • Seo, M.H.;Yoon, J.H.;Cha, G.Y.
    • Journal of Radiation Protection and Research
    • /
    • v.38 no.4
    • /
    • pp.189-193
    • /
    • 2013
  • Annual dose on the containment building wall of the interim storage facility at normal condition was calculated to estimate the dose rate transition of the facility of PWR spent nuclear fuel. In this study, source term was generated by ORIGEN-ARP with 4.5 wt% initial enrichment, 45,000 MWd/MTU burnup and 10 years cooling time. Modeling of the storage facility and the containment building and radiation shielding evaluations were conducted by MCNP code depending on the distance between the wall and the facility in the building. In the case of the centralized storage system, the distance required for the annual dose rate limit from 10CFR72 was estimated to be 50 m.

Accumulation of Chlorogenic Acid as a near UV-shielding Compound in Cauliflower Grown under Enhanced UV-B Radiation

  • Shibata, Hitoshi;Tanaka, Tomoyuki;Yonemura, Takeshi;Sawa, Yoshihiro;Ishikawa, Takahiro
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.436-438
    • /
    • 2002
  • Since solar radiation contains wavelength essential for photosynthesis accompanying with near-UV light, UV-B effects on biological parameters and acclimation mechanisms are influenced by photosynthetically active radiation (PAR). Therefore, to elucidate near-UV shielding mechanism in higher plants, we cultivated cauliflower under usual solar radiation and increased UV-B from fluorescent lamps, two- or three-fold excess over continuously estimated UV-B dose in PAR during daytime, using computer regulated systems. Increased UV-B radiation had little effect on growth expressed as fresh weigh and leaf area. Water soluble low molecular weight compounds showing absorption in near UV region were enhanced according to the irradiated UV-B dose. One of compounds in cauliflower leaves was identified as chlorogenic acid. This was found to have no near-UV photosenSitizerable activity and is known to have an ability to scavenge a wide species of active oxygen. Another pro-oxidant compound that generates superoxide anion radical under near-UV irradiation was not induced by increased UV-B during cultivation, and identified as lumazine, a degradation product from folic acid.

  • PDF

Estimation of RTP Accuracy Based the International Reference Level (국제기준을 적응한 치료계획시스템 정확성 평가)

  • Oh, Young-Kee;Kim, Ki-Hwan;Jeong, Dong-Hyeok;Choi, Tae-Jin;Kim, Jin-Hee;Kim, Ok-Bae
    • Progress in Medical Physics
    • /
    • v.19 no.2
    • /
    • pp.113-119
    • /
    • 2008
  • In this study, we have estimated error of calculation results for 5-type RTP systems and investigated a toleration for error of the RTPs referenced from the evaluation items of AAPM Report-62. For this study, we have introduced the concept of 'normal dose rate(NDR)' and compared the results of experiment and calculation from RTPs at the same reference level. The results from all RTPs were satisfied at various field shapes and heterogeneous phantom materials except the surface irregularity.

  • PDF

Radiation Absorbed Dose Measurement after I-131 Metaiodobenzylguanidine Treatment in a patient with Pheochromycytoma (갈색세포종 환자에서 Medical Internal Radiation Dose법을 이용한 I-131 Metaiodobenzylguanidine 치료 후 흡수선량 평가)

  • Yang, Weon-Il;Kim, Byeung-Il;Lee, Jae-Sung;Lee, Jung-Rim;Choi, Chang-Woon;Lim, Sang-Moo;Hong, Sung-Woon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.33 no.4
    • /
    • pp.422-429
    • /
    • 1999
  • Purpose: The measurement of radiation absorbed dose is useful to predict the response after I-131 labeled metaiodobenzylguanidine (MIBG) therapy and determine therapy dose in patients with unresectable or malignant pheochromocytoma. We estimated the absorbed dose in tumor tissue after high dose I-131 MIBG in a patient with pheochromocytoma using a gamma camera and Medical Internal Radiation Dose (MIRD) formula. Materials and Methods: A 64-year old female patient with pheochromocytoma who had multiple metastases of mediastinum, right kidney and periaortic lymph nodes, received 74 GBq (200 mCi) of I-131 MIBG. We obtained anterior and posterior images at 0.5, 16, 24, 64 and 145 hours after treatment. Two standard sources of 37 and 74 MBq of I-131 were imaged simultaneously. Cummulated I-131 MIBG uptake in tumor tissue was calculated after the correction of background activity, attenuation, system sensitivity and count loss at a high count rate. Results: The calculated absorbed radiation dose was 32-63 Gy/ 74 GBq, which was lower than the known dose for tumor remission (150-200 Gy). follow-up studies at 1 month showed minimally reduced tumor size on computed tomography, and mildly reduced I-131 MIBG uptake. Conclusion: We estimated radiation absorbed dose after therapeutic I-131 MIBG using a gamma camera and MIRD formula, which can be peformed in a clinical nuclear medicine laboratory. Our results suggest that the measurement of radiation absorbed dose in I-131 MIBG therapy is feasible as a routine clinical practice that can guide further treatment plan. The accuracy of dose measurement and correlation with clinical outcome should be evaluated further.

  • PDF

Estimation of Noise Level and Edge Preservation for Computed Tomography Images: Comparisons in Iterative Reconstruction

  • Kim, Sihwan;Ahn, Chulkyun;Jeong, Woo Kyoung;Kim, Jong Hyo;Chun, Minsoo
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.92-98
    • /
    • 2021
  • Purpose: This study automatically discriminates homogeneous and structure edge regions on computed tomography (CT) images, and it evaluates the noise level and edge preservation ratio (EPR) according to the different types of iterative reconstruction (IR). Methods: The dataset consisted of CT scans of 10 patients reconstructed with filtered back projection (FBP), statistical IR (iDose4), and iterative model-based reconstruction (IMR). Using the 10th and 85th percentiles of the structure coherence feature, homogeneous and structure edge regions were localized. The noise level was estimated using the averages of the standard deviations for five regions of interests (ROIs), and the EPR was calculated as the ratio of standard deviations between homogeneous and structural edge regions on subtraction CT between the FBP and IR. Results: The noise levels were 20.86±1.77 Hounsfield unit (HU), 13.50±1.14 HU, and 7.70±0.46 HU for FBP, iDose4, and IMR, respectively, which indicates that iDose4 and IMR could achieve noise reductions of approximately 35.17% and 62.97%, respectively. The EPR had values of 1.14±0.48 and 1.22±0.51 for iDose4 and IMR, respectively. Conclusions: The iDose4 and IMR algorithms can effectively reduce noise levels while maintaining the anatomical structure. This study suggested automated evaluation measurements of noise levels and EPRs, which are important aspects in CT image quality with patients' cases of FBP, iDose4, and IMR. We expect that the inclusion of other important image quality indices with a greater number of patients' cases will enable the establishment of integrated platforms for monitoring both CT image quality and radiation dose.

Characterization of Radiation Field in the Steam Generator Water Chambers and Effective Doses to the Workers (증기발생기 수실의 방사선장 특성 및 작업자 유효선량의 평가)

  • Lee, Choon-Sik;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.24 no.4
    • /
    • pp.215-223
    • /
    • 1999
  • Characteristics of radiation field in the steam generator(S/G) water chamber of a PWR were investigated and the anticipated effective dose rates to the worker in the S/G chamber were evaluated by Monte Carlo simulation. The results of crud analysis in the S/G of the Kori nuclear power plant unit 1 were adopted for the source term. The MCNP4A code was used with the MIRD type anthropomorphic sex-specific mathematical phantoms for the calculation of effective doses. The radiation field intensity is dominated by downward rays, from the U-tube region, having approximate cosine distribution with respect to the polar angle. The effective dose rates to adults of nominal body size and of small body size(The phantom for a 15 year-old person was applied for this purpose) appeared to be 36.22 and 37.06 $mSvh^{-1}$) respectively, which implies that the body size effect is negligible. Meanwhile, the equivalent dose rates at three representative positions corresponding to head, chest and lower abdomen of the phantom, calculated using the estimated exposure rates, the energy spectrum and the conversion coefficients given in ICRU47, were 118, 71 and 57 $mSvh^{-1}$, respectively. This implies that the deep dose equivalent or the effective dose obtained from the personal dosimeter reading would be the over-estimate the effective dose by about two times. This justifies, with possible under- or over- response of the dosimeters to radiation of slant incidence, necessity of very careful planning and interpretation for the dosimetry of workers exposed to a non-regular radiation field of high intensity.

  • PDF

Tissue Inhomogeneity Correction in Clinical Application of Transmission Dosimetry to Head and Neck Cancer Radiation Treatment (두경부 방사선 치료 환자에서 투과선량 알고리즘의 임상 적용시 불균질 조직 보정에 관한 연구)

  • Kim Suzy;Ha Sung Whan;Wu Hong Gyun;Huh Soon Nyung
    • Radiation Oncology Journal
    • /
    • v.22 no.2
    • /
    • pp.155-163
    • /
    • 2004
  • Purpose : To confirm the reproducibility of in vivo transmission dosimetry system and the accuracy of the a1gorithms for the estimation of transmission dose in head and neck radiation therapy patients. Materials and Methods : From September 5 to 18, 2001, transmission dose measurements were peformed when radiotherapy was given to brain or head and neck cancer patients. The data of 35 patients who were treated more than three times and whose central axis of the beam was not blocked were analyzed in this study. To confirm the reproducibility of this system, transmission dose was measured before dally treatment and then repetitively every hour during the treatment time, with a field size of 10$\times$10 cm$^{2}$ and a delivery of 100 MU. The accuracy of the transmission dose calculation algorithms was confirmed by comparing estimated dose with measured dose. To accurately estimate transmission dose, tissue inhomogeneity correction was done. Results : The measurement variations during a day were within $\pm$0.5$\%$ and the dally variations in the checked period were within $\pm$ 1.0$\%$, which were acceptable for system reproducibility. The mean errors between estimated and measured doses were within $\pm$5.0$\%$ in Patients treated to the brain, $\pm$2.5$\%$ in head, and $\pm$ 5.0%$\%$in neck. Conclusion : The results of this study confirmed the reproducibility of our system and its usefulness and accuracy for dally treatment. We also found that tissue inhomogeneity correction was necessary for the accurate estimation of transmission dose in patients treated to the head and neck.

Radon Concentration in Various Indoor Environment and Effective Dose by Inhabitants in Korea (국내 다양한 실내환경에서 라돈농도 및 거주자의 실효선량 평가)

  • Lee, Cheol-Min;Kim, Yoon-Shin;Roh, Young-Man;Kim, Ki-Youn;Jeon, Hyung-Jin;Kim, Jong-Cheol
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.4
    • /
    • pp.264-275
    • /
    • 2007
  • The objective of this study was to offer basic and scientific data for decision-making of policy for improvement and management of radon, natural radiation gas, in Korea and to form the foundation of radon related international cooperation. Therefore, this study collected and re-analysed the articles on exposure of radon in various indoor environment in journals related environment in Korea since 1980 and estimated the annual exposure dose and effective dose by exposure of radon received by inhabitants in them. The highest pooled average radon concentration of $50.17{\pm}4.08\;Bq/m^3$ (95% CI : $42.17{\sim}58.17\;Bq/m^3$) was found in dwelling house among various indoor environment. All of pooled average radon concentration estimated in this study showed lower than the guideline concentration ($148\;Bq/m^3)$ of US EPA and the Korean Ministry of Environment. The annual effective dose received by inhabitants in various indoor environment was estimated 1.071 mSv/yr. That is equal to annual effective dose (1.0 mSv/yr) by exposure of radon estimated by UNSCEAR.

The Experience on Intake Estimation and Internal Dose Assessment by Inhalation of Iodine-131 at Korean Nuclear Power Plants (국내 원전에서 $^{131}I$ 내부 흡입 에 따른 섭취량 산정과 내부피폭 방사선량 평가 경험 몇 개선방향에 대한 연구)

  • Kim, Hee-Geun;Kong, Tae-Young
    • Journal of Radiation Protection and Research
    • /
    • v.34 no.3
    • /
    • pp.129-136
    • /
    • 2009
  • During the maintenance period at Korean nuclear power plants, internal exposure of radiation workers occurred by the inhalation of $^{131}I$ released to the reactor building when primary system opened. The internal radioactivity of radiation workers contaminated by $^{131}I$ was measured using a whole body counter. Intake estimation and the calculation of committed effective dose were also conducted conforming to the guidance of internal dose assessments from publications of International Commission on Radiological Protection. Because the uptake and excretion of $^{131}I$ in a body occur quickly and $^{131}I$ is accumulated in the thyroid gland, the estimated intakes showed differences depending on the counting time after intake. In addition, since ICRP publications do not provide the intake retention fraction (IRF) for whole body of $^{131}I$, the IRF for thyroid was substitutionally used to calculate the intake and subsequently this caused more error in intake estimation. Thus, intake estimation and the calculation of committed effective dose were conducted by manual calculation. In this study, the IRF for whole body was also calculated newly and was verified. During this process, the estimated intake and committed effective dose were reviewed and compared using several computer codes for internal dosimetry.

The Estimated Evacuation Time for the Emergency Planning Zone of the Kori Nuclear Site, with a Focus on the Precautionary Action Zone

  • Lee, Janghee;Jeong, Jae Jun;Shin, Wonki;Song, Eunyoung;Cho, Cheolwoo
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.196-205
    • /
    • 2016
  • Background: The emergency planning zone (EPZ) of the city of Busan is divided into the precautionary actions zone (PAZ) and the urgent protective action planning zone; which have a 5-km radius and a 20-km to 21-km radius from the nuclear power plant site, respectively. In this study, we assumed that a severe accident occurred at Shin-Kori nuclear unit 3 and evaluated the dispersion speed of radiological material at each distance at various wind speeds, and estimated the effective dose equivalent and the evacuation time of PAZ residents with the goal of supporting off-site emergency action planning for the nuclear site. Materials and Methods: The total effective dose equivalent, which shows the effect of released radioactive materials on the residents, was evaluated using the RASCAL 4.2 program. In addition, a survey of 1,036 residents was performed using a standardized questionnaire, and the resident evacuation time according to road and distance was analyzed using the VISSIM 6.0 program. Results and Discussion: According to the results obtained using the VISSIM and RASCAL programs, it would take approximately 80 to 252.2 minutes for permanent residents to move out of the PAZ boundary, 40 to 197.2 minutes for students, 60 to 232.2 minutes for the infirm, such as elderly people and those in a nursing home or hospital, and 30 to 182.2 minutes for those temporarily within the area. Consequently, in the event of any delay in the evacuation, it is estimated that the residents would be exposed to up to $10mSv{\cdot}h^{-1}$ of radiation at the Exclusion Area Boundaries (EAB) boundary and $4-6mSv{\cdot}h^{-1}$ at the PAZ boundary. Conclusion: It was shown that the evacuation time for the residents is adequate in light of the time lapse from the initial moment of a severe accident to the radiation release. However, in order to minimize the evacuation time, it is necessary to maintain a system of close collaboration to avoid traffic congestion and spontaneous evacuation attempts.