• 제목/요약/키워드: Ester

Search Result 2,597, Processing Time 0.039 seconds

[RETRACTED] Changes in the volatile aromatic compounds and amino acid contents of distilled soju using co-fermentation by Saccharomyces cerevisiae and Hanseniaspora uvarum yeasts ([논문철회] Saccharomyces cerevisiae 와 Hanseniaspora uvarum 효모 혼합발효를 이용한 증류식 소주의 휘발성 향기성분 및 아미노산 함량 변화)

  • Kyu-Taek Choi;Chun-Woo Park;Su-Hyun Lee;Ye-Na Lee;Ji-Yun Oh;Jun-Su Choi;Deokyeong Choe;Sae-Byuk Lee
    • Food Science and Preservation
    • /
    • v.30 no.6
    • /
    • pp.1029-1042
    • /
    • 2023
  • This study aimed to apply the technology of increasing the volatile aromatic compounds in wine through mixed fermentation of Saccharomyces cerevisiae and non-Saccharomyces yeasts to make distilled soju. The expectation was to induce changes in metabolites such as volatile aromatic compounds before the distillation process, followed by concentrating these compounds through distillation to enhance the odor property of distilled soju. Additionally, the study aimed to examine the impact of mixed fermentation with S. cerevisiae and non-Saccharomyces yeasts on distilled soju's free amino acid content. As a result, when Hanseniaspora uvarum yeast was used, there was an increase in the content of low molecular weight volatile aroma compounds, particularly esters. Distilled soju co-fermented with S. cerevisiae and H. uvarum SJ69 exhibited similar amino acid content to distilled soju single-fermented with S. cerevisiae. However, distilled soju co-fermented with S. cerevisiae and H. uvarum S6, a decrease in amino acid content. Sensory evaluation results indicated a higher odor score in distilled soju co-fermented with S. cerevisiae and H. uvarum S6, suggesting that the mixed fermentation technology utilizing H. uvarum could contribute to improving the quality of distilled soju in the future.

Rosmarinic Acid Inhibits Ultraviolet B-Mediated Oxidative Damage via the AKT/ERK-NRF2-GSH Pathway In Vitro and In Vivo

  • Mei Jing Piao;Pattage Madushan Dilhara Jayatissa Fernando;Kyoung Ah Kang;Pincha Devage Sameera Madushan Fernando;Herath Mudiyanselage Udari Lakmini Herath;Young Ree Kim;Jin Won Hyun
    • Biomolecules & Therapeutics
    • /
    • v.32 no.1
    • /
    • pp.84-93
    • /
    • 2024
  • Rosmarinic acid (RA) is a phenolic ester that protects human keratinocytes against oxidative damage induced by ultraviolet B (UVB) exposure, however, the mechanisms underlying its effects remain unclear. This study aimed to elucidate the cell signaling mechanisms that regulate the antioxidant activity of RA and confirm its cyto-protective role. To explore the signaling mechanisms, we used the human keratinocyte cell line HaCaT and SKH1 hairless mouse skin. RA enhanced glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase (GSS) expression in HaCaT cells in a dose- and time-dependent manner. Moreover, RA induced nuclear factor erythroid-2-related factor 2 (NRF2) nuclear translocation and activated the signaling kinases protein kinase B (AKT) and extracellular signal-regulated kinase (ERK). Treatment with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, the ERK inhibitor U0126, and small interfering RNA (siRNA) gene silencing suppressed RA-enhanced GCLC, GSS, and NRF2 expression, respectively. Cell viability tests showed that RA significantly prevented UVB-induced cell viability decrease, whereas the glutathione (GSH) inhibitors buthionine sulfoximine, LY294002, and U0126 significantly reduced this effect. Moreover, RA protected against DNA damage and protein carbonylation, lipid peroxidation, and apoptosis caused by UVB-induced oxidative stress in a concentration-dependent manner in SKH1 hairless mouse skin tissues. These results suggest that RA protects against UVB-induced oxidative damage by activating AKT and ERK signaling to regulate NRF2 signaling and enhance GSH biosynthesis. Thus, RA treatment may be a promising approach to protect the skin from UVB-induced oxidative damage.

Type of Oil and Effect of Required HLB on Nanoemulsion Formation (오일의 종류 및 required HLB가 나노에멀젼 형성에 미치는 영향)

  • Da-yeon Lee;Hye-yun Hwang;Su-min Lim;Hy-ein Jang
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.1533-1546
    • /
    • 2023
  • Nanoemulsion is an emulsion with a particle size of about 20 ~ 200 nm and has the advantage of having a transparent or translucent appearance and improving the skin permeability of an effective material with a small particle size, so it is applied in various fields. In this study, eight oils with different types of HLB and 16 oils with different types of required HLB were selected to investigate the effect of the required HLB and the type on the formation of nanoemulsion. The surfactants used at this time were Polysorbate 60 (HLB 14.9), Sorbitan state (HLB 4.7), PEG-60 hydrogenated castor oil (HLB 14.0), which were mixed with Polysorbate 60 and Sorbitan state, fixed with HLB 14.0, and Polysorbate 60 and PEG-60 hydrogenated castor oil, respectively. The formation of nanoemulsion was different depending on the type of oil, and oil with an ester structure showed a relatively excellent nanoemulsion formation ability. In particular, it was confirmed that a stable nanoemulsion was formed without a significant change after Cetyl ethylhexanoin was produced in a small size of 40 nm or less on average. In addition, it was found that using a mixture of Polysorbate 60 and Sorbitan stearate has a superior nanoemulsion formation ability than using PEG-60 hydrogenated castor oil or Polysorbate 60 alone.

Evaluation of Quality Standards of Bio-Diesel (BD100, BD20) Manufactured Using Waste Frying Oil (폐식용유를 이용하여 제조한 바이오디젤(BD100, BD20)의 품질기준 평가)

  • Na, Seong-Joo;Jeon, Byung-Gwan
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.1
    • /
    • pp.39-48
    • /
    • 2009
  • Biodiesel is estimated to be the best recycling energy source as an alternative fuel for transportation vehicles which represents the biggest share of greenhouse effect gas exhausts. Thus, in order to widely expand use of biodiesel and to enhancement its reliability, studies on quality improvement of biodiesel is needed. In this study, we have produced biodiesel(BD100, BD20) through esterification reaction using raw material of waste frying oil and analyzed compatibility with 24 items of quality criteria. As waste frying oil has high contents of unsaturated fatty acid such as Oleic acid, Linoleic acid and Linolenic acid, it is confirmed that there is no problem in using the same as a raw material of biodiesel. The result of analyzing the quality criteria items of biodiesel showed that it satisfied all the quality criteria except the oxidation stability of BD100, which was 2 hours, fatty acid methyl ester of BD20, which was 18.6w% and the filter plugging point, which was $-5^{\circ}C$. We believe that it will contribute to improved utilization of waste resources as alternative energy if studies on technology to improve quality of some items are provided.

Food Components of Wild and Cultured Fresh Water Fishes (천연 및 양식산 담수어의 식품성분)

  • KIM Kyung-Sam;LEE Eung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.19 no.3
    • /
    • pp.195-211
    • /
    • 1986
  • The object of this study is to obtain fundamental data on cultured fishes produced in Korea to improve their food components. For this purpose, the food components of cultured fresh water fishes such as eel, Anguilla japonica, snakehead, Channa argus, and common carp, Cyprinus carpio, were investigated and compared with those of the wild ones. The results obtained are summarized as follows: 1. Common characteristics in the proximate composition were that wild fish was higher in crude protein content and lower in crude lipid content than those of cultured one. 2. Among the 9 kinds of minerals analyzed in all the samples, sodium, potassium, calcium and magnesium contents were absolutely predominant being more than $99.52\%$. These four elements in feedstuff also occupied $99.68{\sim}99.92%$ of total minerals. 3. The neutral lipids of wild and cultured eel, snakehead and common carp occupied $55.7{\sim}95.8%$ of lipid fractions, while the content of the phospholipids in snakehead was particularly higher than those of others. 4. The neutral lipids of wild and cultured eel, snakehead and common carp mainly consisted of triglycerides ($85{\sim}95%$), and a little quantity of diglycerides, monoglycerides, free sterol ester and hydrocarbon were also identified in the neutral lipid. 5. The phospolipids of eel and common carp were mainly occupied by phosphatidyl choline ($71.3{\sim}83.9%$), followed by phosphatidyl ethanolamine ($12.1{\sim}23.5%$) and phosphatidyl serine ($7.5{\sim}13.8%$). The phospholipids of snakhead consisted of phosphatidyl choline ($50.7{\sim}64.5%$), phosphatidyl ethanolamine ($28.0{\sim}35.5%$) and phosphatidyl serine ($7.5{\sim}13.8%$). Generally, phosphatidyl choline content was higher in wild fish than in cultured one, while phosphatidyl ethanolamine and phosphatidyl serine contents were higher in cultured one. 6. The major fatty acids in total lipid of wild eel, snakehead and common carp were $C_{16:0}\;and\;C_{20:5}$, while those in cultured ones were $C_{18:1},\;C_{18:2}\;and\;C_{22:6}$. The fatty acid composition of neutral lipids showed similar tendency to that of total lipid, and the main fatty acids in phospholipids of cultured fishes were $C_{18:1}\;and\;C_{18:2}$. In glycolipids, $C_{20:5}\;and\;C_{22:6}$ were higher in wild fishes, while $C_{18:2}$ were higher in cultured ones. 7. Total amino acids contents of wild and cultured eel were nearly the same, being $16.65\%$ ana $15.99\%$ respectively. The major amino acids of wild and cultured fish were glutamic acid, leucine, aspartic acid and lysine in order. In snakehead, the contents of aspartic acid and proline in cultured fish were higher than those in wild one, while the contents of glutamic acid, alanine, glycine were higher in the wild one. Total amino acid content of cultured common carp was $21.7\%$ compared with $17.08\%$ in wild one. The contents of glutamic acid, aspartic acid, glycine, proline and alanine occupied higher quantities in cultured common carp compared with those in wild one while the other amino acids revealed no significant difference. 8. Aspartic acid in free amino acids of cultured eel held $1.0\%$ of total free amino acids, while that in wild eel held $2.9\%$. Histidine, arginine and tyrosine content of cultured fish were two times higher than those of wild one. But free amino acid composition of samples seemed to be no marked differences according to cultured places. The contents of arginine, aspartic acid, glutamic acid, methionine and phenylalanine of snakehead ware higher in wild one than in cultured one, while the contents of lysine, histidine, glycine, and alanine ware higher in cultured one. In free amino acids content of wild common carp, histidine, glycine and lysine occupied $76.9\%$ of total free amino acids. Lysine, histidine, aspartic acid, alanine, valine and leucine were higher in wild one compared with those of cultured one, while glycine and tyrosine contents were higher in cultured fish.

  • PDF

Studies on the Development of Food Resources from Waste Seeds -II. Chemical Composition of Apple Seed- (폐기종실(廢棄種實)의 식량자원화(食糧資源化)에 관(關)하여 -제(第) 2 보(報) : 사과씨의 화학적(化學的) 조성(組成)-)

  • Yoon, Hyung-Sik;Choi, Cheong;Oh, Man-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.128-132
    • /
    • 1983
  • The apple seed contained 25.96% of crude fat and 37.62% of crude protein. The lipid fractions obtained by cilicic column chromatography were mainly composed of about 93.52% neutral lipid, whereas compound lipid was only 6.48% level. Among the neutral lipid separated by thin layer chromatography, triglyceride was 92.17%, sterol ester, sterol, diglyceride and free fatty acid were 3.53, 2.25, 1.44 and 0.56, respectively. The predominent fatty acids of total and neutral lipids were linoleic acid (59.79-69.37%) and oleic acid (20.04-29.82%), but those of glycolipid and phojspholipid were linoleic acid (29.20-36.04%). The major fatty acids of triglyceride separated from neutral lipid were oleic acid (44.31%), linoleic acid (36.66%) and palmitic acid (12.48%). The salt soluble protein of apple seed was highly dispersible in 0.02M sodium phosphate buffer containing about 1.0M $MgSO_4$, and the extractability of seed protein was 37%, Glutamic acid was the major amino acid in salt soluble protein, followed by arginine and aspartic acid. The eletrophoretic analysis showed three bands in apple seed protein, and the collection rate of the main protein fraction purified by Sephadex G-100 and G-200 was 76.6%. Glutamic acid, aspartic acid and arginine were the major amino acids of the main apple seed protein. The molecular weight for the main protein of the apple seed was estimated to be 45,000.

  • PDF

Thermotropic Liquid Crystalline and Photochemical Phase Transition Behavior of Octa[8-{4-(4'-cyanophenylazo)phenoxy}]octyl and Octa[8-{4-(4'-cyanophenylazo) phenoxycarbonyl}]heptanoated Disaccharides (옥타[8-{4-(4'-시아노페닐아조)펜옥시}]옥틸 그리고 옥타[8-{4-(4'-시아노페닐아조) 펜옥시카보닐}]헵타노화 이당류의 열방성 액정과 광화학적 상전이 거동)

  • Kim, Hyo Gap;Jung, Seung Yong;Jeong, Hee Sung;Ma, Yung Dae
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.776-788
    • /
    • 2012
  • Octa[8-{4-(4'-cyanophenylazo)phenoxy}]octyl and octa[8-{4-(4'-cyanophenylazo)phenoxycarbonyl}]heptanoated disaccharide derivatives were synthesized by reacting cellobiose, maltose, and lactose with 1-{4-(4'-cyanophenylazo) phenoxy}octylbromide or 1-{4-(4'-cyanophenylazo)phenoxycarbonyl}]heptanoyl chloride, and their thermotropic liquid crystalline and photochemical phase transition behavior were investigated. All the {(cyanophenylazo)phenoxy} octyl disaccharide ethers (CADETs) formed monotropic nematic (N) phases, whereas all the {(cyanophenylazo) phenoxycarbonyl}heptanoated disaccharide esters (CADESs) exhibited enantiotropic N phases. Compared with CADETs, CADESs showed higher isotropic (I)-to-N phase transition temperatures. Photoirradiation of the disaccharide derivatives in a glass cell or in a cell with a rubbed polyimide (PI) alignment layer at a N phase resulted in disappearance of the N phase due to trans-cis photoisomerization of azobenzene, and the initial N phase was recovered when the irradiated sample was kept in the dark because of cis-trans thermal isomerization and reorientation of trans-azobenzenes. The rates of the photochemical N-I and the thermal I-N phase transition of disaccharide derivatives in a cell with a rubbed PI alignment layer were faster than those in a glass cell, and were significantly different from those observed for the monomesogenic compounds containing cyanoazobenzene and the 4-{4'-(cyanophenylazo)phenoxy}octyl glucose and cellulose ethers. The results were discussed in terms of difference in cooperative motion of azobenzene groups due to the flexibility of the main chain, the number of mesogenic units per repeating units, and the distance between the azobenzene groups.

Phytochemical Analysis and Anti-cancer Investigation of Boswellia Serrata Bioactive Constituents In Vitro

  • Ahmed, Hanaa H;Abd-Rabou, Ahmed A;Hassan, Amal Z;Kotob, Soheir E
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7179-7188
    • /
    • 2015
  • Cancer is a major health obstacle around the world, with hepatocellular carcinoma (HCC) and colorectal cancer (CRC) as major causes of morbidity and mortality. Nowadays, there isgrowing interest in the therapeutic use of natural products for HCC and CRC, owing to the anticancer activity of their bioactive constituents. Boswellia serrata oleo gum resin has long been used in Ayurvedic and traditional Chinese medicine to alleviate a variety of health problems such as inflammatory and arthritic diseases. The current study aimed to identify and explore the in vitro anticancer effect of B. Serrata bioactive constituents on HepG2 and HCT 116 cell lines. Phytochemical analysis of volatile oils of B. Serrata oleo gum resin was carried out using gas chromatography-mass spectrometry (GC/MS). Oleo-gum-resin of B. Serrata was then successively extracted with petroleum ether (extract 1) and methanol (extract 2). Gas-liquid chromatography (GLC) analysis of the lipoidal matter was also performed. In addition, a methanol extract of B. Serrata oleo gum resin was phytochemically studied using column chromatography (CC) and thin layer chromatography (TLC) to obtain four fractions (I, II, III and IV). Sephadex columns were used to isolate ${\beta}$-boswellic acid and identification of the pure compound was done using UV, mass spectra, $^1H$ NMR and $^{13}C$ NMR analysis. Total extracts, fractions and volatile oils of B. Serrata oleo-gum resin were subsequently applied to HCC cells (HepG2 cell line) and CRC cells (HCT 116 cell line) to assess their cytotoxic effects. GLC analysis of the lipoidal matter resulted in identification of tricosane (75.32%) as a major compound with the presence of cholesterol, stigmasterol and ${\beta}$-sitosterol. Twenty two fatty acids were identified of which saturated fatty acids represented 25.6% and unsaturated fatty acids 74.4% of the total saponifiable fraction. GC/MS analysis of three chromatographic fractions (I,II and III) of B. Serrata oleo gum resin revealed the presence of pent-2-ene-1,4-dione, 2-methyl- levulinic acid methyl ester, 3,5- dimethyl- 1-hexane, methyl-1-methylpentadecanoate, 1,1- dimethoxy cyclohexane, 1-methoxy-4-(1-propenyl)benzene and 17a-hydroxy-17a-cyano, preg-4-en-3-one. GC/MS analysis of volatile oils of B. Serrata oleo gum resin revealed the presence of sabinene (19.11%), terpinen-4-ol (14.64%) and terpinyl acetate (13.01%) as major constituents. The anti-cancer effect of two extracts (1 and 2) and four fractions (I, II, III and IV) as well as volatile oils of B. Serrata oleo gum resin on HepG2 and HCT 116 cell lines was investigated using SRB assay. Regarding HepG2 cell line, extracts 1 and 2 elicited the most pronounced cytotoxic activity with $IC_{50}$ values equal 1.58 and $5.82{\mu}g/mL$ at 48 h, respectively which were comparable to doxorubicin with an $IC_{50}$ equal $4.68{\mu}g/mL$ at 48 h. With respect to HCT 116 cells, extracts 1 and 2 exhibited the most obvious cytotoxic effect; with $IC_{50}$ values equal 0.12 and $6.59{\mu}g/mL$ at 48 h, respectively which were comparable to 5-fluorouracil with an $IC_{50}$ equal $3.43{\mu}g/mL$ at 48 h. In conclusion, total extracts, fractions and volatile oils of B. Serrata oleo gum resin proved their usefulness as cytotoxic mediators against HepG2 and HCT 116 cell lines with different potentiality (extracts > fractions > volatile oil). In the two studied cell lines the cytotoxic acivity of each of extract 1 and 2 was comparable to doxorubicin and 5-fluorouracil, respectively. Extensive in vivo research is warranted to explore the precise molecular mechanisms of these bioactive natural products in cytotoxicity against HCC and CRC cells.

Studies on the Development of Food Resources from Waste Seeds IV. Chemical Composition of Red Pepper Seed (폐기종실(廢棄種實)의 식량자원화(食糧資源化)에 관(關)하여 제(第) 4 보(報) : 고추씨의 화학적(化學的) 조성(組成))

  • Yoon, Hyung Sik;Kwon, Joong Ho;Bae, Man Jong;Hwang, Joo Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.12 no.1
    • /
    • pp.46-50
    • /
    • 1983
  • In order to find out the possibility of utilizing red pepper seed as food resources of fats and proteins, a series of studies were conducted. The red pepper seed contained 27.6% of crude fat and 22.2% of crude protein. The lipid fractions obtained by silicic acid column chromatography were mainly composed of 95.4% neutral lipid, where as compound lipid were 4.6%. Among the neutral lipid separated by thin layer chromatography, triglyceride was 85.6%, sterol ester 4.9%, free fatty acids 3.4%, diglyceride 2.5%, sterol 2.2% and monoglyceride 1.1%, respectively. The predominant fatty acids of red pepper seed oil were linoleic acid (57.1-75.4%), palmitic acid (13.9-21.3%) and oleic acid (8.0-15.1%), especially glycolipid contained 1.7% of linolenic acid and small amount of myristic acid and arachidic acid. The salt soluble protein of red pepper seed was highly dispersible in 0.02M sodium phosphate buffer containing 1.0M $MgSO_4$, and the extractability of seed protein was about 25.0%. Glutamic acid and arginine were major amino acids of red pepper seed protein. The electrophoretic analysis showed 6 bands in seed protein, and the collection rate of the main protein fraction purified by sephadex G-100 and G-200 was about 62.2%. Glutamic acid (19.9%) was major amino acid of the main protein, followed by glycine and alanine. The molecular weight of the main protein was estimated to be 93,000.

  • PDF

Differential Cytotoxicity of Penta-O-galloyl-β-D-glucose in Human Cancer and Normal Cell Lines of Various Origins (사람의 다양한 조직에서 기원하는 암세포 및 정상세포에 대한 penta-O-galloyl-β-D-glucose의 세포독성 효과)

  • Lee, Hyeon-Jeong;Kim, Min-Gyeong;Lee, Song-Yeong;Song, Min-Hyock;Kim, Yoon-Dong;Ha, Jeong-Sook;Jeong, Gie-Joon;Rho, Gyu-Jin;Jeon, Byeong-Gyun
    • Journal of Life Science
    • /
    • v.26 no.11
    • /
    • pp.1320-1329
    • /
    • 2016
  • The present study examined the cytotoxic effects of 1, 2, 3, 4, 6-penta-O-galloyl-${\beta}$-D-glucose (PGG), known as the pentahydroxy gallic acid ester of glucose, in the various human cancer cell lines (A-549, MDA-MB-231, U87-MG, MCF-7 and PANC-1), normal MRC-5 fetal fibroblasts, and dental papilla tissue- derived mesenchymal stem cells (DPSCs). Significantly (p<0.05) lower half maximal inhibitory concentration ($IC_{50}$) values were observed in the A-549 and MDA-MB-231 cells showing a high proliferation capacity, compared with other cancer and normal cell lines with a relatively low proliferation capacity. The population doubling time (PDT) was significantly (p<0.05) higher in the $10{\mu}M$ PGG-treated cell lines than those of untreated control cell lines. The present study demonstrated that the $IC_{50}$ value increases proportionally to the extending PDT. A high cell number with senescence-associated ${\beta}-galactosidase$ activity was also observed in the $10{\mu}M$ PGG-treated cells compared with those of untreated control cells. Moreover, the level of telomerase activity was significantly (p<0.05) decreased with $10{\mu}M$ PGG treatment, especially in A-549 and MDA-MB-231 cells showing a high proliferation capacity. Based on these observations, PGG could serve as a potent agent for cancer chemotherapy, as its treatment was more effective in cells with a high proliferation capacity.