• 제목/요약/키워드: Essential Genes

검색결과 525건 처리시간 0.033초

Expression patterns of Rho-associated protein kinase signaling pathway-related genes in mouse submandibular glands

  • Kim, Ki-Chul;Roh, Sangho
    • International Journal of Oral Biology
    • /
    • 제46권2호
    • /
    • pp.81-84
    • /
    • 2021
  • Salivary glands are exocrine glands that secrete saliva into the oral cavity, and secreted saliva plays essential roles in oral health. Therefore, maintaining the salivary glands in an intact state is required for proper production and secretion of saliva. To investigate a specific signaling pathway that might affect the maintenance of mouse submandibular gland (SMGs), RNA sequencing was performed. In SMGs, downregulated expression patterns of Rho-associated protein kinase (ROCK) signaling pathway-related genes, including Rhoa, Rhob, Rhoc, Rock1, and Rock2, were observed. Gene expression profiling analyses of these genes indicate that the ROCK signaling pathway is a potential signal for SMG maintenance.

Combined Effects Methylation of FHIT, RASSF1A and RARβ Genes on Non-Small Cell Lung Cancer in the Chinese Population

  • Li, Wen;Deng, Jing;Tang, Jian-Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권13호
    • /
    • pp.5233-5237
    • /
    • 2014
  • Epigenetic modifications of tumour suppressor genes are involved in all kinds of human cancer. Aberrant promoter methylation is also considered to play an essential role in development of lung cancer, but the pathogenesis remains unclear.We collected the data of 112 subjects, including 56 diagnosed patients with lung cancer and 56 controls without cancer. Methylation of the FHIT, RASSF1A and RAR-${\beta}$ genes in DNA from all samples and the corresponding gene methylation status were assessed using the methylation-specific polymerase chain reaction (PCR, MSP). The results showed that the total frequency of separate gene methylation was significantly higher in lung cancer compared with controls (33.9-85.7 vs 0 %) (p<0.01).Similar outcomes were obtained from the aberrant methylation of combinations of any two or three genes (p<0.01). There was a tendency that the frequency of combinations of any two or three genes was higher in stage I+II than that in stage III+IV with lung cancer. However, no significant difference was found across various clinical stages and clinic pathological gradings of lung cancer (p>0.05).These observations suggest that there is a significant association of promoter methylation of individual genes with lung cancer risk, and that aberrant methylation of combination of any two or three genes may be associated with clinical stage in lung cancer patients and involved in the initiation of lung cancer tumorigenesis. Methylation of FHIT, RASSF1A and $RAR{\beta}$ genes may be related to progression of lung oncogenesis.

Transcriptional Profiles of Imprinted Genes in Human Embryonic Stem Cells During In vitro Differentiation

  • Park, Sang-Wook;Do, Hyo-Sang;Kim, Dongkyu;Ko, Ji-Yun;Lee, Sang-Hun;Han, Yong-Mahn
    • International Journal of Stem Cells
    • /
    • 제7권2호
    • /
    • pp.108-117
    • /
    • 2014
  • Background and Objectives: Genomic imprinting is an inheritance phenomenon by which a subset of genes are expressed from one allele of two homologous chromosomes in a parent of origin-specific manner. Even though fine-tuned regulation of genomic imprinting process is essential for normal development, no other means are available to study genomic imprinting in human during embryonic development. In relation with this bottleneck, differentiation of human embryonic stem cells (hESCs) into specialized lineages may be considered as an alternative to mimic human development. Methods and Results: In this study, hESCs were differentiated into three lineage cell types to analyze temporal and spatial expression of imprinted genes. Of 19 imprinted genes examined, 15 imprinted genes showed similar transcriptional level among two hESC lines and two human induced pluripotent stem cell (hiPSC) lines. Expressional patterns of most imprinted genes were varied in progenitors and fully differentiated cells which were derived from hESCs. Also, no consistence was observed in the expression pattern of imprinted genes within an imprinting domain during in vitro differentiation of hESCs into three lineage cell types. Conclusions: Transcriptional expression of imprinted genes is regulated in a cell type- specific manner in hESCs during in vitro differentiation.

Characterization of Two GAS1 Genes and Their Effects on Expression and Secretion of Heterologous Protein Xylanase B in Kluyveromyces lactis

  • Lian, Zhao;Jiang, Jing-Bo;Chi, Shuang;Guan, Guo-Hua;Li, Ying;Li, Ji-Lun
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권12호
    • /
    • pp.1977-1988
    • /
    • 2015
  • β-1,3-glucanosyltransferases play essential roles in cell wall biosynthesis in yeast. Kluyveromyces lactis has six putative β-1,3-glucanosyltransferase genes. KlGAS1-1 and KlGAS1-2 are homologs of Saccharomyces cerevisiae gene GAS1. RT-qPCR indicated the transcription level of KlGAS1-1 was significantly reduced while heterologous protein (thermostable xylanase B) secretion was enhanced during medium optimization. To evaluate if these two events were related, and to improve xylanase B secretion in K. lactis, we constructed KlGAS1-1 and KlGAS1-2 single deletion strains and double deletion strain, respectively. KlGAS1-1 gene deletion resulted in the highest xylanase B activity among the three mutants. Only the double deletion strain showed morphology similar to that of the GAS1 deletion mutant in S. cerevisiae. The two single deletion strains differed in terms of cell wall thickness and xylanase B secretion. Transcription levels of β-1,3-glucanosyltransferase genes and genes related to protein secretion and transport were assayed. The β-1,3-glucanosyltransferase genes displayed transcription complementation in the cell wall synthesis process. KlGAS1-1 and KlGAS1-2 affected transcription levels of secretion- and transport-related genes. Differences in protein secretion ratio among the three deletion strains were associated with changes of transcription levels of secretion- and transport-related genes. Our findings indicate that KlGAS1-1 deletion is an effective tool for enhancing industrial-scale heterologous protein secretion in K. lactis.

Deciphering the Genes for Taste Receptors for Fructose in Drosophila

  • Uchizono, Shun;Itoh, Taichi Q.;Kim, Haein;Hamada, Naoki;Kwon, Jae Young;Tanimura, Teiichi
    • Molecules and Cells
    • /
    • 제40권10호
    • /
    • pp.731-736
    • /
    • 2017
  • Taste sensitivity to sugars plays an essential role in the initiation of feeding behavior. In Drosophila melanogaster, recent studies have identified several gustatory receptor (Gr) genes required for sensing sweet compounds. However, it is as yet undetermined how these GRs function as taste receptors tuned to a wide range of sugars. Among sugars, fructose has been suggested to be detected by a distinct receptor from other sugars. While GR43A has been reported to sense fructose in the brain, it is not expressed in labellar gustatory receptor neurons that show taste response to fructose. In contrast, the Gr64a-Gr64f gene cluster was recently shown to be associated with fructose sensitivity. Here we sought to decipher the genes required for fructose response among Gr64a-Gr64f genes. Unexpectedly, the qPCR analyses for these genes show that labellar expression levels of Gr64d and Gr64e are higher in fructose low-sensitivity flies than in high-sensitivity flies. Moreover, gustatory nerve responses to fructose in labellar sensilla are higher in Gr64d and Gr64f mutant lines than in mutant flies of the other Gr64a-Gr64f genes. These data suggest the possibility that deletion of GR64D or GR64F may indirectly induce enhanced fructose sensitivity in the labellum. Finally, we conclude that response to fructose cannot be explained by a single one of the Gr64a-Gr64f genes.

Identification of ABSCISIC ACID (ABA) signaling related genes in Panax ginseng

  • Hong, Jeongeui;Kim, Hogyum;Ryu, Hojin
    • Journal of Plant Biotechnology
    • /
    • 제45권4호
    • /
    • pp.306-314
    • /
    • 2018
  • Korean ginseng (Panax ginseng) has long been cultivated as an important economic medicinal plant. Owing to the seasonal and long-term agricultural cultivation methods of Korean ginseng, they are always vulnerable to various environmental stress conditions. ABSCISIC ACID (ABA) is an essential plant hormone associated with seed development and diverse abiotic stress responses including drought, cold and salinity stress. By modulating ABA responses, plants can regulate their immune responses and growth patterns to increase their ability to tolerate stress. With recent advances in genome sequencing technology, we first reported the functional features of genes related to canonical ABA signaling pathway in P. ginseng genome. Based on the protein sequences and functional genomic analysis of Arabidopsis thaliana, the ABA related genes were successfully identified. Our functional genomic characterizations clearly showed that the ABA signaling related genes consisting the ABA receptor proteins (PgPYLs), kinase family (PgSnRKs) and transcription factors (PgABFs, PgABI3s and PgABI5s) were evolutionary conserved in the P. ginseng genome. We confirmed that overexpressing ABA related genes of P. ginseng completely restored the ABA responses and stress tolerance in ABA defective Arabidopsis mutants. Finally, tissue and age specific spatio-temporal expression patterns of the identified ABA-related genes in P. ginseng tissues were also classified using various available RNA sequencing data. This study provides ABA signal transduction related genes and their functional genomic information related to the growth and development of Korean ginseng. Additionally, the results of this study could be useful in the breeding or artificial selection of ginseng which is resistant to various stresses.

Analysis of Gene-specific Molecular Markers for Biotic and Abiotic Stress Resistance in Tropically adapted Japonica Rice Varieties

  • Jung-Pil Suh;Sung-Ryul Kim;Sherry Lou Hechanova;Marianne Hagan;Graciana Clave;Myrish Pacleb
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.292-292
    • /
    • 2022
  • Since 1992, the Rural Development Administration (RDA), Republic of Korea in collaboration with International Rice Research Institute (IRRI) has developed 6 japonica rice varieties(MS11, Japonica 1, 2, 6, 7 and Cordillera 4) that are adaptable to tropical regions. However, these varieties show moderate resistance or susceptibility to certain biotic and abiotic stress. The development of varieties with more stable forms of resistance is highly desirable, and this could be possibly achieved through rapid introgression of known biotic and abiotic resistant genes. In this study, we analyzed the allele types of major biotic stress resistant genes including Xa5, Xa13, Xa21 and Xa25 for bacterial leaf blight, Pi5, Pi40, Pish and Pita2 for blast, tsv1 for rice tungro spherical virus, and Bph6, Bph9, Bph17, Bph18 and Bph32 for brown planthopper by using gene-specific molecular markers. In addition, seed quality related genes Sdr4 for preharvest sprouting and qLG-9 for seed longevity were also analyzed. The results revealed that2h5 and Xa25 resistance alleles showed in all varieties while Pi5 resistance allele showed only in MS11. The Pish resistance allele were present in five varieties except for Japonica 1. Meanwhile, for the rest of the genes, no presence of resistance alleles found in six varieties. In conclusions, most of tropical japonica varieties are lack of the major biotic stress resistant genes and seed quality genes (Sdr4 and qLG-9). Moreover, the results indicated that rapid deployment of a few major genes in the current tropical japonica rice varieties is urgent to increase durability and spectrum of biotic stress resistance and also seed dormancy/longevity which are essential traits for tropical environments.

  • PDF

glpD와 glpE 유전자의 조절영역 결손변이주가 전사조절에 미치는 영향 (Effect of deletion mutants in the regulatory region of transcriptional regulation of glpD and glpE genes)

  • 정희태;최용악;정수열
    • 생명과학회지
    • /
    • 제5권4호
    • /
    • pp.162-169
    • /
    • 1995
  • The glpD genes encoding gly-3-p dehydrogenase is essential for the aerobic growth of E. coli on glycerol or gly-3-p. The glpE gene, the function of which is unknownm is transcribed divergently with respect to glpD gene. Expression of the adjacent but divergently transcribed glpD the glpE genes is positively regulated by the cAMP-CRP complex. In this study, for a precise investigation of the functional elements in the regulatory region for transcription activation by cAMP-CRP, deletion mutation have been introducted into the regulatory region. The effect of the deletion mutant on transcriptional regulation was tested in vivo by $\beta$-galctosidase activity. Deletion mutants in the regulatory region of glpD demonstrated that the presence of the CRP-binding site resulted in an sixfold increase in promoter activity. And also deletion mutants of glpE gene demonstrated that the presence of the CRP-binding site resulted in an eightfold increase in promoter activity. Insertion of 22 bp oligomer in the deletion mutants has shown that the CRP binding site is need for maximal expression of glpD and glpE genes. glpD and glpE gene, cAMP-CRP complex, deletion mutant, transcriptional regulation.

  • PDF

Epigallocatechin-3-gallate의 사람 비점막 섬유아세포 케모카인발현에 대한 효과 (Effect of Epigallocatechin-3-gallate on Expression of Chemokines in Human Nasal Mucosal Fibroblasts)

  • 조정제;임강현
    • 생약학회지
    • /
    • 제32권4호통권127호
    • /
    • pp.280-286
    • /
    • 2001
  • Epigallocathechin-3-gallate (EGCG), the main polyphenol component in green tea, inhibits angiogenesis, urokinase, and matalloproteinases, and EGCG also has the antioxidative property. Recent reports proposed that EGCG may modulate the immune response on allergy or asthma. Human nasal mucosal fibroblasts are a rich source of cytokines, inflammatory mediators, and chemokines. Chemokines are important for the recruitment of leukocytes to sites of infection, which is essential in host defense. The objective of this study was to investigate the effect of EGCG on the expression of the chemokines such as RANTES (regulated upon activation, normal T cell expressed and presumably secreted), eotaxin, and interleukin-8 (IL-8) in human nasal mucosal fibroblasts after stimulation with cytokines like IL-4, tumor necrosis $factor-{\alpha}\;(TNF-{\alpha})$, and $interferon-{\gamma}\;(IFN-{\gamma})$. To detect the expression of chemokine genes, RT-PCR was performed. Expressions of RANTES, eotaxin, and IL-8 mRNA stimulated with IL-4 and $TNF-{\alpha}$ were increased, respectively, while the expression of those genes incubated with $IFN-{\gamma}$ was similar pattern compared to control group. Analyses of chemokine genes of cells pretreated with EGCG showed that the expressions of eotaxin, and IL-8 genes stimulated $IFN-{\gamma}$ were higher compared with those not pretreated with EGCG.

  • PDF