• Title/Summary/Keyword: Escherichia coli O157:H7

Search Result 373, Processing Time 0.025 seconds

A Brief Overview of Escherichia coli O157:H7 and Its Plasmid O157

  • Lim, Ji-Youn;Yoon, Jang-W.;Hovde, Carolyn J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.5-14
    • /
    • 2010
  • Enterohemorrhagic Escherichia coli O157:H7 is a major foodborne pathogen causing severe disease in humans worldwide. Healthy cattle are a reservoir of E. coli O157:H7, and bovine food products and fresh produce contaminated with bovine waste are the most common sources for disease outbreaks in the United States. E. coli O157:H7 also survives well in the environment. The abilities to cause human disease, colonize the bovine gastrointestinal tract, and survive in the environment require that E. coli O157:H7 adapt to a wide variety of conditions. Three major virulence factors of E. coli O157:H7 have been identified including Shiga toxins, products of the pathogenicity island called the locus of enterocyte effacement, and products of the F-like plasmid pO157. Among these virulence factors, the role of pO157 is least understood. This review provides a board overview of E. coli O157:H7 with an emphasis on pO157.

Isolation of Escherichia coli O157:H7 from animal feces and biochemical characteristics of Verotoxin-2 produced by these strains I. Study on the phages related to production of Verotoxin-2, and Isolation of Escherichia coli O157:H7 from feces of cattle and pigs (동물분변에서 Escherichia coli O157:H7의 분리 및 이들 균이 생산하는 Verotoxin-2의 생물화학적 특성 I. 소와 돼지의 분변에서 E coli O157:H7의 분리 및 Verotoxin-2 생산에 관여하여 파아지의 분리에 관하여)

  • Cha, In-ho;Kim, Yong-hwan
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.2
    • /
    • pp.371-378
    • /
    • 1996
  • Three and 2 strains of E coli O157 were isolated from fecal materials of cattle (390) and pigs (420) in Korea, respectively. One strain of O157:H7 isolated from cattle and 2 strains of O157:H7 isolated from pigs were identified as verotoxin-1 (VT-1) produing strains and 2 strains (O157:H7 and O157:H-) isolated from cattle were identified as verotoxin-2 (VT-2) producing strains by neutralization test on HeLa and Vero cells. Culture supernatants of the isolates were cytotoxic to HeLa and Vero cells. The levels of cytotoxin produced by isolates were $10^2{\sim}10^4$ cytotoxic dose($CD_{50}$)/ml. Also, VT-2-converting bacteriophage was isolated from KSC109 strain which had been isolated from cattle. Molecular weight of the phage DNA was determined as approximately 45 Kb in 0.8% agarose gel electrophoresis, and morphology of the phage stained with phosphotungstic acid was observed by transmissible electron microscopy.

  • PDF

Improved Detection of Viable Escherichia coli O157:H7 in Milk by Using Reverse Transcriptase-PCR

  • Choi, Suk-Ho;Lee, Seung-Bae
    • Food Science of Animal Resources
    • /
    • v.31 no.2
    • /
    • pp.158-165
    • /
    • 2011
  • A sensitive reverse transcriptase-PCR (RT-PCR) method to detect viable Escherichia coli O157:H7 in milk was established. The primer sets were designed based on the nucleotide sequences of the rfbE (per) and wbdN genes in the O157 antigen gene cluster of E. coli O157:H7. RT-PCR using five different primer sets yielded DNA with sizes of 655, 518, 450, and 149-bp, respectively. All five of the E. coli O157:H7 strains were detected by RT-PCR, but 11 other bacterial species were not. The sensitivity of RT-PCR was improved by adding yeast tRNA as a carrier to the crude RNA extract. The RT-PCR amplifying the 149-bp DNA fragment was the most sensitive for detecting E. coli O157:H7 and the most refractory to the bactericidal treatments. Heat treatment at $65^{\circ}C$ for 30 min was the least inhibitory of all bactericidal treatments. Treatment with RNase A strongly inhibited the RT-PCR of heated milk but not unheated milk. This study described RT-PCR methods that are specific and sensitive with a detection limit of 10 E. coli O157:H7 cells, and showed that pre-treating milk samples with RNase A improved the specificity to detect viable bacteria by RT-PCR.

Isolation of Verocytotoxin Producing Escherichia coli O157:H7 Due to Fcal Contamination on Carcass Surfaces (도체표면의 분변오염과 Verotoxin 생성 Escherichia coli O157:H7 분리에 관한 연구)

  • 홍종해;고주언
    • Journal of Food Hygiene and Safety
    • /
    • v.12 no.1
    • /
    • pp.78-82
    • /
    • 1997
  • Surface swab samples from beef (188), pork (240) and chicken (95) carcasses were collected from slaughterhouse in Kangwon and Kyunggi areas from March through July 1996. The samples were examined on the level of E. coli biotype I relevant to fecal contamination due to unsanitary processing control and the existence of verocytotoxin-producing E. coli (VTEC). E. coli biotype I were confirmed from 38.8% of beef, 40.0% of pork, and 69.5% of chicken carcasses. Little variation was noted among three sampling points; rump, flank and neck of beef, ham, belly and jowls of pork. coli O157:H7 was only confirmed from 2 of 188 beef carcasses. E. coli biotype I. All the isolated E. coli O157 showed positive for vero cell cytotoxicity test. Isolation rate of E. coli O157 in summer was higher than in spring. In case of pork and chicken carcasses, E. coli O157 was isolated in summer only.

  • PDF

Application of Probabilistic Model to Calculate Probabilities of Escherichia coli O157:H7 Growth on Polyethylene Cutting Board

  • Lee, Joo-Yeon;Suk, Hee-Jin;Lee, Hee-Young;Lee, Soo-Min;Yoon, Yo-Han
    • Food Science of Animal Resources
    • /
    • v.32 no.1
    • /
    • pp.62-67
    • /
    • 2012
  • This study calculated kinetic parameters of Escherichia coli O157:H7 and developed a probabilistic model to estimate growth probabilities of E. coli O157:H7 on polyethylene cutting boards as a function of temperature and time. The surfaces of polyethylene coupons ($3{\times}5$ cm) were inoculated with E. coli O157:H7 NCCP11142 at 4 Log $CFU/cm^2$. The coupons were stored at 13 to $35^{\circ}C$ for 12 h, and cell counts of E. coli O157:H7 were enumerated on McConkey II with sorbitol agar every 2 h. Kinetic parameters (maximum specific growth rate, Log $CFU/cm^2/h$; lag phase duration, h; lower asymptote, Log $CFU/cm^2$; upper asymptote, Log $CFU/cm^2$) were calculated with the modified Gompertz model. Of 56 combinations (temperature${\times}$time), the combinations that had ${\geq}$0.5 Log $CFU/cm^2$ of bacterial growth were designated with the value of 1, and the combinations that had increases of <0.5 Log $CFU/cm^2$ were given the value 0. These growth response data were fitted to the logistic regression to develop the model predicting probabilities of E. coli O157:H7 growth. Specific growth rate and growth data showed that E. coli O157:H7 cells were grown at $28-35^{\circ}C$, but there were no obvious growth of the pathogen below $25^{\circ}C$. Moreover, the developed probabilistic model showed acceptable performance to calculate growth probability of E. coli O157:H7. Therefore, the results should be useful in determining upper limits of working temperature and time, inhibiting E. coli O157:H7 growth on polyethylene cutting board.

Prophylactic Effects of Bifidobacterium longum HY8001 against Escherichia coli O157:H7 and Salmonella typhimurium DT104 Enteric Infection and Evaluation of Vero Cytotxin Neutralizing Effects (Bifidobacterium longum HY8001 균주의 Escherichia coli O157:H7과 Salmonella typhimurium DT104 장곤 내 감염 예방효과 및 Vero cytotoxin 중화효과)

  • 양수진;윤장원;서근석;구혜정;김소현;배형석;백영진;박용호
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.5
    • /
    • pp.419-425
    • /
    • 1999
  • Prophylactic effects of Bifidobacterium longum HY8001, Korean isolate, against Escherichia coli O157:H7 and Salmonella typhimurium DT104 enteric infection were examined at four groups of specific pathogen free(SPF)-ICR mouse for each pathogen. B. longum HY8001+B. typhimurium DT104+B. longum HY8001(BL+ST+BL) group and B. longum HY8001+E. coli O157:H7+B. longum HY8001(BL+E+BL) group were fed with B. longum HY8001 before and after E. coli O157:H7 or s. typhimurium DT104 challenge, while B. longum HY8001+S. typhimurium DT104(BL+ST) and B. longum HY8001+e. coli O157:H7(BL+E) groups were fed with B. longum HY8001 only before E. coli O157:H7 or S. typhimurium DT104 challenge. E. coli O157:H7(E) and S. typhimurium DT104(ST) groups were challenged with each pathogen without B. longum HY8001 administration and control groups were administered with phosphate buffered solution(PBS). After the oral administration with B. longum HY8001(109cfu), th emice were challenged with E. coli O157:H7(2$\times$1010cfu) or S. typhimurium DT104(108cfu) and the mortality rate and the fecal shedding of challenged pathogen were also examined define the reactivity of the B. longum HY8001. Production of toxin neutralizing substance(s) of B. longum HY8001 was determined by cell cytotoxicity assay using Vero cells. Fecal shedding of th eS. typhimurium DT104 was significantly decreased in BL+ST+BL group fed with B. longum HY8--1 before and after challenge(p<0.05), while the fecal shedding s of S. typhimurium DT104 in BL+ST and St groups remained more than 106cfu. the protective effect of the B. longum HY8001 against E. coli O157:H7 was significantly high only in BL+E+BL group fed with b. longum Hy8001 before and after E. coli O157:H7 challenge from the result of fecal E. coli O157:H7 isolation rate, mortality rate, and intestinal contents culture to detect E. coli O157:H7. the mortality rate of the BL+e and E groups. The cytopathic effect (CPE) of the Vero cytotoxin (Shiga like toxin I & II) in Vero cell was neutralized in B. longum HY8001 culture supernatant added wells which indicate the presence of soluble Vero cytotxin neutralizing substance(s) in B. longum HY8001 culture suprnatant.

  • PDF

Detection of Escherichia coli O157:H7 Using Immunosensor Based on Surface Plasmon Resonance

  • Oh, Byung-Keun;Kim, Young-Kee;Bae, Young-Min;Lee, Won-Hong;Choi, Jeong-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.780-786
    • /
    • 2002
  • An immunosensor based on surface plasmon resonance (SPR) with a self-assembled protein G layer was developed for the detection of Escherichia coli O157:H7. A self-assembled protein C layer on a gold (Au) surface was fabricated by adsorbing the mixture of 11-mercaptoundecanoic acid (MUA) and hexanethiol at various molar ratios and by activating chemical binding between free amine (-$NH_2$) of protein G and 11-(MUA) using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDAC) in series. The formation of a self-assembled protein G layer on an Au substrate and the binding of the antibody and antigen in series were confirmed by SPR spectroscopy. The surface morphology analyses of the self-assembled protein G layer on the Au substrate, monoclonal antibody (Mab) against E. coli O157:H7 which was immobilized on protein G, and bound E. coli O157:H7 extracts on Immobilized Mab against E. coii O157:H7 were performed by atomic force microscopy (AFM). The detection limit of the SPR-based immunosensor for E. coli O157:H7 was found to be about $10^4$ cells/ml.

Detection of Escherichia coli O157:H7 Using Combined Procedure of Immunomagnetic Separation and Test Strip Liposome Immunoassay

  • Kim, Myung-Hee;Oh, Se-Jong;Durst, Richard-A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.13 no.4
    • /
    • pp.509-516
    • /
    • 2003
  • A model system for the immnunochemical detection of Escherichia coli O157:H7 using a combined immunomagnetic separation (IMS) and test-strip liposome immunoassay (LIA) procedure was developed. Immunomagnetic beads coated with anti-E. coli O157 IgG antibodies were used to separate the E. coli O157 (including the H7 serotype) from culture. Immunoliposomes, whose surface was conjugated to goat anti-E. coli O157:H7 IgG and which encapsulated the marker dye, sulforhodamine B, were used as a detection label. The test strip, onto which antibodies to goat IgG were immobilized, was the immunosensor capturing immunoliposomes that did not bind to E. coli O157:H7 on the immunomagnetic bead-E. coli O157:H7 complexes. In experiments, pure cell culture suspensions of $10^5 E.$ coli O157:H7 organisms per ml produced a measurable signal inhibition, whereas a weak yet detectable signal inhibition occurred with $10^3CFU/ml$. The inhibition signals increased, when the incubation time for IMS was extended to 90 min and higher IgG-tag density (0.4mol%) was used on the liposomes. With 0.2 and 0.4mol% IgG-tagged liposomes, the IMS-LIA procedure showed more improved signal inhibitions than those of a direct (no IMS) LIA. The combined assay, which measures the instantaneous signal from immunoliposomes, can be completed within 90 min, making it significantly faster than conventional plating methods and enzyme-linked immunosorbent assay (ELISA). Accordingly, it is quite feasible to use the combined immunoassay format of IMS and dye-loaded immunoliposomes for the detection of E. coli O157:H7.

Effects of Preheating and Ascorbate on Heat Resistance of Escherichia coli O157:H7 (Escherichia coli O157:H7 균주의 열저항성에 미치는 예비열처리 및 Ascorbate의 효과)

  • 권오진;김덕진;김순희;변명우
    • Journal of Food Hygiene and Safety
    • /
    • v.12 no.4
    • /
    • pp.304-309
    • /
    • 1997
  • A study was undertaken to determine the thermal inactivation of Escherichia coli O157:H7 as influenced by the effects of temperature, time, suspension medium and ascorbate. Tryptic soy broth was more heat resistant than pfosphate buffer (pH 7.1), with D values of 1.52~1.68 min at 6$0^{\circ}C$ and 1.51~1.63 min at 7$0^{\circ}C$ compared with 1.52~1.65 min at 6$0^{\circ}C$ and 1.26~1.61 min at 7$0^{\circ}C$ for phosphate buffer as suspension medium. E. coli O157:H7 was completely inhibited within 30 min when small inoculum (106 CFU/$m\ell$) was heated at 7$0^{\circ}C$. When E. coli O157:H7 was preheated at 48$^{\circ}C$ for 60 min in phosphate buffer before heating, D values were 1.28~1.60 min at 6$0^{\circ}C$, and 1.13~1.56 min at 7$0^{\circ}C$, showing that preheating increases the heat resistance of the strain. Phosphate buffer containing ascorbate (0.001 M) was enhanced the thermal inactivation of the strain when inoculated as large inoculum (109 CFU/$m\ell$), while ascorbic acid was no effect at low cell concentrations (109 CFU/$m\ell$).

  • PDF