• Title/Summary/Keyword: Erythroid differentiation

Search Result 37, Processing Time 0.025 seconds

Negative Regulation of Erythroid Differentiation via the CBX8-TRIM28 Axis

  • Kim, Hyun Jeong;Park, Jin Woo;Kang, Joo-Young;Seo, Sang-Beom
    • Molecules and Cells
    • /
    • v.44 no.7
    • /
    • pp.444-457
    • /
    • 2021
  • Although the mechanism of chronic myeloid leukemia (CML) initiation through BCR/ABL oncogene has been well characterized, CML cell differentiation into erythroid lineage cells remains poorly understood. Using CRISPR-Cas9 screening, we identify Chromobox 8 (CBX8) as a negative regulator of K562 cell differentiation into erythrocytes. CBX8 is degraded via proteasomal pathway during K562 cell differentiation, which activates the expression of erythroid differentiation-related genes that are repressed by CBX8 in the complex of PRC1. During the differentiation process, the serine/threonine-protein kinase PIM1 phosphorylates serine 196 on CBX8, which contributes to CBX8 reduction. When CD235A expression levels are analyzed, the result reveals that the knockdown of PIM1 inhibits K562 cell differentiation. We also identify TRIM28 as another interaction partner of CBX8 by proteomic analysis. Intriguingly, TRIM28 maintains protein stability of CBX8 and TRIM28 loss significantly induces proteasomal degradation of CBX8, resulting in an acceleration of erythroid differentiation. Here, we demonstrate the involvement of the CBX8-TRIM28 axis during CML cell differentiation, suggesting that CBX8 and TRIM28 are promising novel targets for CML research.

Microarray Profiling of Genes Differentially Expressed during Erythroid Differentiation of Murine Erythroleukemia Cells

  • Heo, Hyen Seok;Kim, Ju Hyun;Lee, Young Jin;Kim, Sung-Hyun;Cho, Yoon Shin;Kim, Chul Geun
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.57-68
    • /
    • 2005
  • Murine erythroleukemia (MEL) cells are widely used to study erythroid differentiation thanks to their ability to terminally differentiate in vitro in response to chemical induction. At the molecular level, not much is known of their terminal differentiation apart from activation of adult-type globin gene expression. We examined changes in gene expression during the terminal differentiation of these cells using microarray-based technology. We identified 180 genes whose expression changed significantly during differentiation. The microarray data were analyzed by hierarchical and k-means clustering and confirmed by semi-quantitative RT-PCR. We identified several genes including H1f0, Bnip3, Mgl2, ST7L, and Cbll1 that could be useful markers for erythropoiesis. These genetic markers should be a valuable resource both as potential regulators in functional studies of erythroid differentiation, and as straightforward cell type markers.

The Up-Regulation of miR-199b-5p in Erythroid Differentiation Is Associated with GATA-1 and NF-E2

  • Li, Yuxia;Bai, Hua;Zhang, Zhongzu;li, Weihua;Dong, Lei;Wei, Xueju;Ma, Yanni;Zhang, Junwu;Yu, Jia;Sun, Guotao;Wang, Fang
    • Molecules and Cells
    • /
    • v.37 no.3
    • /
    • pp.213-219
    • /
    • 2014
  • MicroRNAs (miRNAs) represent a class of small non-coding regulatory RNAs that play important roles in normal hematopoiesis, including erythropoiesis. Although studies have identified several miRNAs that regulate erythroid commitment and differentiation, we do not understand the mechanism by which the crucial erythroid transcription factors, GATA-1and NF-E2 directly regulate and control differentiation via miRNA pathways. In this study, we identified miR-199b-5p as a key regulator of human erythropoiesis, and its expression was up-regulated during the erythroid differentiation of K562 cells. Furthermore, the increase of miR-199b-5p in erythroid cells occurred in a GATA-1- and NF-E2-dependent manner during erythrocyte maturation. Both GATA-1 and NF-E2 bound upstream of the miR-199b gene locus and activated its transcription. Forced expression of miRNA-199b-5p in K562 cells affected erythroid cell proliferation and maturation. Moreover, we identified c-Kit as a direct target of miR-199b-5p in erythroid cells. Taken together, our results establish a functional link among the erythroid transcription factors GATA-1/NF-E2, miR-199b-5p and c-Kit, and provide new insights into the coupling of transcription and post-transcription regulation in erythroid differentiation.

Potential Role of $Ca^{++}$ on the Differentiation of Erythroid Progenitor Cells

  • Cho, In-Koo;Huh, In-Hoe;Lee, Sang-Jun;Kim, Dong-Seop;Ann, Hyung-Soo
    • Archives of Pharmacal Research
    • /
    • v.18 no.2
    • /
    • pp.105-112
    • /
    • 1995
  • In ordedr to gain insight into the mechanisms byl which erythropoietin promotes erythropoiesis, effects of various inhibitors on the erythropoietin-propmoted differentiation of erythroid progenitor cells and on the erythroid progenitor cells and on the erythropoietin-promoted $Ca^{++}$ uptake in the progenitor cells were determined, and the relationship between the inhibitory activity of each inhibitor cells were determined, and he relationship between the inhibitory activity of each inhibitor toward the differentiation and channel blocker (varapamil), a $Ca^{++}$ chelator (EDTA) and a protein kinase C inhibitor (stauroporine). All of these agents inhibited both the erythropoietin-mediated differentiation of the erythroid progenitor cells, as determined by the incroporation of $^{59}Fe$ into heme, and $Ca^{++}$ uptake in a concentrtion dependent manner. In the cases of varapamil and EDTA, the half-miximal inhibitory concentration $(IC_{50})$ values for differentiation of the progenitor cells may be theconsequence of the inhibition of the $Ca^{++}$ uptake in a concentration dependent manner. In the cases of varapamil and EDTA, the half-miximal inhibitory concentration dependent manner. In the cases of verapamil and EDTA, the half-miximal inhibitory concentration $(IC_{50})$ values for differentiation of the progenitor cells may be the consequence of the inhibition of the $Ca^{++}$ uptake by the inhibitor. On the other hand, in the cases of genistein and stauroporine, the $IC_{50}$ values for inhibition of differentitation were significantly different from that for inhibition of $Ca^{++}$uptake. These results suggest that the mechanism of inhibition of differentiation by these two inhibitors in complex. However, taken all together, the above results support the proposition that $Ca^{++}$ uptake may play a role in the erythropoietin-mediated differentiation of erythoid progenitor cells.

  • PDF

Expression of miR-210 during erythroid differentiation and induction of γ-globin gene expression

  • Bianchi, Nicoletta;Zuccato, Cristina;Lampronti, Ilaria;Borgatti, Monica;Gambari, Roberto
    • BMB Reports
    • /
    • v.42 no.8
    • /
    • pp.493-499
    • /
    • 2009
  • MicroRNAs (miRs) are a family of small noncoding RNAs that regulate gene expression by targeting mRNAs in a sequence specific manner, inducing translational repression or mRNA degradation. In this paper we have first analyzed by microarray the miR-profile in erythroid precursor cells from one normal and two thalassemic patients expressing different levels of fetal hemoglobin (one of them displaying HPFH phenotype). The microarray data were confirmed by RT-PCR analysis, and allowed us to identify miR-210 as an highly expressed miR in the erythroid precursor cells from the HPFH patient. When RT-PCR was performed on mithramycin-induced K562 cells and erythroid precursor cells, miR-210 was found to be induced in time-dependent and dose-dependent fashion, together with increased expression of the fetal $\gamma$-globin genes. Altogether, the data suggest that miR-210 might be involved in increased expression of $\gamma$-globin genes in differentiating erythroid cells.

Potential Role of Protein Kinase C on the Differentiation of Erythroid Progenitor Cells

  • Lee, Sang-Jun;Cho, In-Koo;Huh, In-Hoe;Yoon, Ki-Yom;Ann, Hyung-Soo
    • Archives of Pharmacal Research
    • /
    • v.18 no.2
    • /
    • pp.90-99
    • /
    • 1995
  • The effect of protein kinase C inhibitors, sturosporine and 1-(5-isoquinolinyl sulfonyl)-2-methyl piperazine(H7) on in vitro differentiation of erythroid progenitor cells which were isolated from spleens of mice infected with the anemia-inducing strain of Friend virus were examined. Erythropoietin-mediated differentitation of erythroid progenitor cells, as determined by the incorporation of $^{59}Fe$ into protoporphyrin, was inhibited by staurosporine and H7 in a concentration -dependent manner. Scatchard analysis of the $^3H-phorbol-12$, 13-dibutyrate binding to erythroid progenitor cells revealed that at the high affinity sites the dissociation constant was 22nM and the maximum number of $^3H-phorbol-12$, 13-dibutyrate binding to erythroid progenitor cells revealed that at the high affinity sites the dissociation constant was 22nM and the maximum number of $^3H-phorbol-12$, 13-dibutyrate binding sites per cell was approximately $3.7\times10^5$. Cytosonic protein kinase C was isolated from erthroid progenitor cells and then purified by sequential column chromatogrphy. Two isoforms of protein kinase C were found. Photoaffinity labeling of the purified protein kinase C samples with $^3H-phorbol-12$12-myristate 13-acetate followed by analysis of SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and autofluorography showed radiolabeled 82-KDa pepticles. Rediolabeling of the 82-KDa peptides with $^3H-phorbol-12$myristate 13-acete was almost completely blocked by excess unlabeled phorbol 12-myristate 13-acetate was almost 12-muristate 13-acetate-promoted phosphorylation with the puyrified protein kinase C samples showed that the phosphorylation of 82-KDa peptides was increased as the concentration of phorbol 12-myristate 13-acetate was increased from $10^{-8}M{\;}to{\;}10^{-4}$M. In light of the findings that erythroid progenitor cells possessed an abundance of protein kinase C and that stauroporine and H7 inhibited erythroid differentiation, it seemed likely that protein kinase C would play a role in the erythroid progenitor cell development.

  • PDF

Cloning and characterization of polyA- RNA transcripts encoded by activated B1-like retrotransposons in mouse erythroleukemia MEL cells exposed to methylation inhibitors

  • Tezias, Sotirios S.;Tsiftsoglou, Asterios S.;Amanatiadou, Elsa P.;Vizirianakis, Ioannis S.
    • BMB Reports
    • /
    • v.45 no.2
    • /
    • pp.126-131
    • /
    • 2012
  • We have previously identified a DNA silent region located downstream of the 3'-end of the ${\beta}^{major}$ globin gene (designated B1-559) that contains a B1 retrotransposon, consensus binding sites for erythroid specific transcription factors and shares the capacity to act as promoter in hematopoietic cells interacting with ${\beta}$-globin gene LCR sequences in vitro. In this study, we have cloned four new non-polyA RNA transcripts being detected upon blockade of murine erythroleukemia (MEL) cell differentiation to erythroid maturation by methylation inhibitors and demonstrated that two of them share high structural homology with sequences of B1 element found within the B1-559 region. Although it is not clear yet whether and how these RNAs interfere with induction of erythroid maturation, these data provide evidence for the first time showing that methylation inhibitors can activate silent repetitive DNA sequences in MEL cells and may have implications in cancer chemotherapy using demethylating drugs as antineoplastic agents.

Angelica Sinensis Polysaccharide Induces Erythroid Differentiation of Human Chronic Myelogenous Leukemia K562 Cells

  • Wang, Lu;Jiang, Rong;Song, Shu-Dan;Hua, Zi-Sen;Wang, Jian-Wei;Wang, Ya-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3715-3721
    • /
    • 2015
  • Leukemia is a clonal disorder with blocked normal differentiation and cell death of hematopoietic progenitor cells. Traditional modalities with most used radiation and chemotherapy are nonspecific and toxic which cause adverse effects on normal cells. Differentiation inducing therapy forcing malignant cells to undergo terminal differentiation has been proven to be a promising strategy. However, there is still scarce of potent differentiation inducing agents. We show here that Angelica sinensis polysaccharide (ASP), a major active component in Dong quai (Chinese Angelica sinensis), has potential differentiation inducing activity in human chronic erythro-megakaryoblastic leukemia K562 cells. MTT assays and flow cytometric analysis demonstrated that ASP inhibited K562 cell proliferation and arrested the cell cycle at the G0/G1 phase. ASP also triggered K562 cells to undergo erythroid differentiaton as revealed by morphological changes, intensive benzidine staining and hemoglobin colorimetric reaction, as well as increased expression of glycophorin A (GPA) protein. ASP induced redistribution of STAT5 protein from the cytoplasm to the nucleus. Western blotting analysis further identified that ASP markedly sensitized K562 cells to exogenous erythropoietin (EPO) by activating EPO-induced JAK2/STAT5 tyrosine phosphorylation, thus augmenting the EPO-mediated JAK2/STAT5 signaling pathway. On the basis of these findings, we propose that ASP might be developed as a potential candidate for chronic myelogenous leukemia inducing differentiation treatment.

A Simple Embryonic Stem Cell-Based in vitro Differentiation System That Recapitulates Early Erythropoietic Events in the Mouse Embryo (생쥐 배아에서의 초기 적혈구 분화를 재현 할 수 있는 배아주 세포에 기초한 간단한 시험관내 분화체계)

  • 김철근
    • The Korean Journal of Zoology
    • /
    • v.39 no.3
    • /
    • pp.239-247
    • /
    • 1996
  • An embryonic stem (ES) cell-based in vitro model system was examined to determine whether a simple differentiation of embryoid bodies (EB) in the suspension medium is useful to dissect early erythropoiesis. Characteristics of the differentiating EBs were monitored for their differentiation potential to generate hematopoietic cell types by general morphology, benzidine staining and two-step colony assays, and expressivity of several erythroid marker genes by the RT-PCR analysis for total cellular RNA prepared from the differentiating EBs. Every ematopoietic lineage cells were generated from the differentiating EBs with reproducible frequencies, similar to the other sophisticated differentiation protocols. Furthermore, the globin gene switching in differentiating ES cells paralleled the sequence of events found in the mouse embryo, and such that their expression was activated by at least 12 hrs later than those of erythroid-specific transcription factors, GATA-1 and Tal-1 The erythropoietic differentiation program initiated reproducibly and efficiently in this simple differentiation system in a suspension culture, such that this system may be useful for dissection of the molecular events of early erythropoiesis.

  • PDF

Activation of Nrf2 by sulfuretin stimulates chondrocyte differentiation and increases bone lengths in zebrafish

  • Seo-Hyuk Chang;Hoi-Khoanh Giong;Da-Young Kim;Suji Kim;Seungjun Oh;Ui Jeong Yun;Jeong-Soo Lee;Kye Won Park
    • BMB Reports
    • /
    • v.56 no.9
    • /
    • pp.496-501
    • /
    • 2023
  • Elongation of most bones occur at the growth plate through endochondral ossification in postnatal mammals. The maturation of chondrocyte is a crucial factor in longitudinal bone growth, which is regulated by a complex network of paracrine and endocrine signaling pathways. Here, we show that a phytochemical sulfuretin can stimulate hypertrophic chondrocyte differentiation in vitro and in vivo. We found that sulfuretin stabilized nuclear factor (erythroid-derived 2)-like 2 (Nrf2), stimulated its transcriptional activity, and induced expression of its target genes. Sulfuretin treatment resulted in an increase in body length of zebrafish larvae and induced the expression of chondrocyte markers. Consistently, a clinically available Nrf2 activator, dimethyl fumarate (DMF), induced the expression of hypertrophic chondrocyte markers and increased the body length of zebrafish. Importantly, we found that chondrocyte gene expression in cell culture and skeletal growth in zebrafish stimulated by sulfuretin were significantly abrogated by Nrf2 depletion, suggesting that such stimulatory effects of sulfuretin were dependent on Nrf2, at least in part. Taken together, these data show that sulfuretin has a potential use as supporting ingredients for enhancing bone growth.