Communications for Statistical Applications and Methods
/
제3권1호
/
pp.73-85
/
1996
In this paper, we consider the distribution-free confidence intervals for the reliability of the stress-strength model when the stress X and strength Y depend linearly on some explanatory variables z and w, respectively. We apply these confidence intervals to the Rocket-Motor data and compare the results to those of Guttman et al. (1988). Some simulation results show that the distribution-free confidence intervals have better performance for nonnormal errors compared to those of Guttman et al. (1988), which are designed for normal random variables in respect that the former yield the coverage levels closer to the nominal coverage level than the latter.
In order to calculate the thermal stresses of massive concrete structures in non-steady state conditions the thermal properties of the materials have to be well known. Structural materials such as concrete, rock and soil are heterogeneous, damp and porous so that measurements of their thermal properties by conventional methods would result in large errors. In this study, thermal conductivity was measured by the device, QTM-D3 which is usually used in Japan. Variables are chosen as age, water content, temperature, aggregate content, S/A ratio and type of cementitious materials. Finally a model for thermal conductivity was proposed.
The purpose of the present study was to examine the causal model of nurses' organizational commitment. Based on literature review and Fishbein's behavioral intentions model ((Fishbein. 1967: Fishbein & Ajzen. 1975). the organizational commitment was conceptualized within a motivational framework that mediate between antecedents variables and outcome variables. Antecedent variables were pay, promotional chances. continuing education opportunity. rigidity of the administration. paticipative decision making, latitude, group support, role conflict, work load, need for achievement. experience and pride for professional nursing. Outcome variable was turnover intention. The subjects were 373 nurses who were working at 2 large general hospitals located in Seoul. It represents a response rate of 94%. Data for this study was collected from August 29 to September 22 in 1997 by Questionnaire. Path analysis with LISREL 7.16 prigram was used to test the fit of the proposed conceptual model to data and to examine the causal relationships among variables. The result showed that both the proposed model and the modified model fit the data excellently. It needs to be notified, however. that path analysis can not count measurment errors: measurement error can attenuate estimates of coefficient and explanatory power. Nontheless the model revealed considerable explanatory power for organizational commitment (58%), pride for professional nursing (50%) and turnover intention(40%). In predicting nurses' organizational commitment, the findings of this study clearly demonstrated 'the pride for professional nursing' might be the most important variables of all the antecedent variables. Group support, role conflict, need for achievement were also found to be important determinants for the organizational commitment and turnover intention, The result showed experience might be a predictor for 'pride for professional nursing' and 'turnover intention' but not 'organizational commitment', 'Rigidity of the administration' and latitude were also found to have important roles in predictingr the organizational commitment, while participative decision making might have an impact on turnover intention. On the other hand promotional chance had an influence on all the outcome variables, while pay only on turnover intention. In predicting turnover intention, the result clearly revealed 'the pride for professional nursing' and 'organizational commitment' might be the most powerful predictors among all the variables. Theses results were discussed, including directions for the future research and practical implications drawn from the research were suggested.
The purpose of the present study was to examine the causal model of nurses' organizational commitment. Based on literature review and Fishbein's behavioral intentions model ((Fishbein, 1967;Fishbein & Ajzen. 1975), the organizational commitment was conceptualized within a motivational framework that mediate between antecedents variables and outcome variables. Antecedent variables were pay, promotional chances, continuing education opportunity, rigidity of the administration, paticipative decision making, latitude, group support, role conflict, work load, need for achievement, experience and pride for professional nursing. Outcome variable was turnover intention. The subjects were 373 nurses who were working at 2 large general hospitals located in Seoul. It represents a response rate of 94%. Data for this study was collected from August 29 to September 22 in 1997 by Questionnaire. Path analysis with LISREL 7.16 prigram was used to test the fit of the proposed conceptual model to data and to examine the causal relationships among variables. The result showed that both the proposed model and the modified model fit the data excellently. It needs to be notified, however, that path analysis can not count measurement errors; measurement error can attenuate estimates of coefficient and explanatory power. Nontheless the model revealed considerable explanatory power for organizational commitment (58%). pride for professional nursing (50%) and turnover intention(40%). In predicting nurses' organizational commitment. the findings of this study clearly demonstrated 'the pride for professional nursing' might be the most important variables of all the antecedent variables. Group support. role conflict, need for achievement were also found to be important determinants for the organizational commitment and turnover intention. The result showed experience might be a predictor for 'pride for professional nursing' and 'turnover intention' but not 'organizational commitment'. 'Rigidity of the administration' and latitude were also found to have important roles in predictor for the organizational commitment, while participative decision making might have an impact on turnover intention. On the other hand promotional chance had an influence on all the outcome variables, while pay only on turnover intention. In predicting turnover intention, the result clearly revealed 'the pride for professional nursing' and 'organizational commitment' might be the most powerful predictors among all the variables. Theses results were discussed, including directions for the future research and practical implications drawn from the research were suggested.
[Purpose] This pilot study aimed to develop a regression model to estimate the excess post-exercise oxygen consumption (EPOC) of Korean adults using various easy-to-measure dependent variables. [Methods] The EPOC and dependent variables for its estimation (e.g., sex, age, height, weight, body mass index, fat-free mass [FFM], fat mass, % body fat, and heart rate_sum [HR_sum]) were measured in 75 healthy adults (31 males, 44 females). Statistical analysis was performed to develop an EPOC estimation regression model using the stepwise regression method. [Results] We confirmed that FFM and HR_sum were important variables in the EPOC regression models of various exercise types. The explanatory power and standard errors of estimates (SEE) for EPOC of each exercise type were as follows: the continuous exercise (CEx) regression model was 86.3% (R2) and 85.9% (adjusted R2), and the mean SEE was 11.73 kcal, interval exercise (IEx) regression model was 83.1% (R2) and 82.6% (adjusted R2), while the mean SEE was 13.68 kcal, and the accumulation of short-duration exercise (AEx) regression models was 91.3% (R2) and 91.0% (adjusted R2), while the mean SEE was 27.71 kcal. There was no significant difference between the measured EPOC using a metabolic gas analyzer and the predicted EPOC for each exercise type. [Conclusion] This pilot study developed a regression model to estimate EPOC in healthy Korean adults. The regression model was as follows: CEx = -37.128 + 1.003 × (FFM) + 0.016 × (HR_sum), IEx = -49.265 + 1.442 × (FFM) + 0.013 × (HR_sum), and AEx = -100.942 + 2.209 × (FFM) + 0.020 × (HR_sum).
본 연구에서는 여러가지 시계열 모형 중 평활법(가법계절지수, 승법계절지수), 계절 ARIMA 모형, ARARCH 그리고 AR-GARCH 회귀모형을 이용하여 최대 전력수요를 예측하는 방법을 연구하였다. 이 때 가중 평균모형으로 추세를 갖는 시계열 모형과 온도에 대한 회귀 모형을 적절한 가중치로 예측 정확도를 높이는 방법도 연구하였다. 결과적으로 AR-GARCH 회귀모형으로 예측하는 것이 가중 우수함을 보였다.
This paper presents the algorithm for envelope protection of helicopters. The algorithm consists of two feedback control loops: inner loop and outer loop. As an inner loop control, model following control is designed to meet the ADS-33 handling qualities specification by minimizing the tracking errors between the responses of the actual model and those of the command filter. In order to implement envelope protection, saturation limiter is imposed to command channels in command filter, whose limits are computed corresponding to the envelope limit. Fast model predictive control is designed as an outer loop control to deal with saturation constraints generated by the inner loop envelope protection and also imposed by outer loop envelope protection variables. Simulation results show that the proposed algorithm yields good envelope protection performance.
Geolocation accuracy is one of the important factors in utilizing all weather available SAR satellite imagery. In this study, an error budget analysis was performed on key variables affecting on geolocation accuracy by generating KOMPSAT-5 simulation data. To perform the analysis, a Range-Doppler model was applied as a geometric model of the SAR imagery. The results show that the geolocation errors in satellite position and velocity are linearly related to the biases in the azimuth and range direction. With 0.03cm/s satellite velocity biases, the simulated errors were up to 0.054 pixels and 0.0047 pixels in the azimuth and range direction, and it implies that the geolocation accuracy is sensitive in the azimuth direction. Moreover, while the clock drift causes a geolocation error in the azimuth direction, a signal delay causes in the range direction. Monte-Carlo simulation analysis was performed to analyze the influence of multiple geometric error sources, and the simulated error was up to 3.02 pixels in the azimuth direction.
[1] There are systematical errors associated with ionospheric influence in retrieving key atmospheric parameters from radio occultation (RO) soundings. In order to obtain better-quality retrievals, we develop a new method, hereafter called National Central University Radio Occultation (NCURO) scheme, to reduce the ionospheric influence. The excess phase is divided into two parts, namely geometric excess length and path excess length (excess length along ray path due to refractivity effect). An excess phase equation is presented and implemented in the NCURO scheme Whose performance is evaluated through comparisons with model simulation and experimental data. The model simulation is based on the use of the ionospheric model 002001 and atmospheric model NRLMSISE-OO. Results show that the NCURO scheme significantly reduces the ionospheric influence at altitudes above 70 km as does the scheme presented in the literature, and provides better corrections for the atmospheric profile. INDEX TERMS: 2400 Ionosphere: Ionosphere; 6964 Radio Science: Radio wave propagation; 6969 Radio Science: Remote sensing.
Objective: The objective of this study was to develop a model for estimating the carcass weight of Hanwoo cattle as a function of body measurements using three different modeling approaches: i) multiple regression analysis, ii) partial least square regression analysis, and iii) a neural network. Methods: Data from a total of 134 Hanwoo cattle were obtained from the National Institute of Animal Science in South Korea. Among the 372 variables in the raw data, 20 variables related to carcass weight and body measurements were extracted to use in multiple regression, partial least square regression, and an artificial neural network to estimate the cold carcass weight of Hanwoo cattle by any of seven body measurements significantly related to carcass weight or by all 19 body measurement variables. For developing and training the model, 100 data points were used, whereas the 34 remaining data points were used to test the model estimation. Results: The R2 values from testing the developed models by multiple regression, partial least square regression, and an artificial neural network with seven significant variables were 0.91, 0.91, and 0.92, respectively, whereas all the methods exhibited similar R2 values of approximately 0.93 with all 19 body measurement variables. In addition, relative errors were within 4%, suggesting that the developed model was reliable in estimating Hanwoo cattle carcass weight. The neural network exhibited the highest accuracy. Conclusion: The developed model was applicable for estimating Hanwoo cattle carcass weight using body measurements. Because the procedure and required variables could differ according to the type of model, it was necessary to select the best model suitable for the system with which to calculate the model.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.