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A Comparison of Confidence Intervals for the Reliability of
the Stress—Strength Models with Explanatory Variablesv

Eun Sik Park?, Jae Joo Kim3), Sung Hyun Park3

Abstract

In this paper, we consider the distribution-free confidence intervals for the reliability
of the stress-strength model when the stress X and strength Y depend linearly on

some explanatory variables 2 and w, respectively. We apply these confidence intervals

to the Rocket-Motor data and compare the results to those of Guttman et al. (1988).
Some simulation results show that the distribution-free confidence intervals have
better performance for nonnormal errors compared to those of Guttman et al. (193R),
which are designed for normal random variables in respect that the former yield the
coverage levels closer to the nominal coverage level than the latter,

1. Introduction

Suppose Y is the strength of a unit subjected to a stress X. In the stress-strength model,

the reliability of the stress-strength model is defined as P(X<Y), which is the probability

that the strength of the unit exceeds the applied stress. The above model was first considered
by Bimbaum (1956) and has been found an increasing number of applications in many
different areas, especially in the structural and aircraft industries.

In this paper, we consider the reliability of the stress and strength when they are linearly

related to explanatory variables. Suppose that X is related to p explanatory variables 2z and

Y is related to g explanatory variables w according to the linear relations,
X=u+ B (z—2z)+8 and Y=v+ 7 (w— w )+e, (1.1)
where 8=(8,,-,B,) and 7=(7,-.,7,) are regression coefficients and the errors & and

& are independent random variables with distributions F and G, respectively, such that
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Es8=FEe=(, Vard= o’ (o and Vare= r*{co,
Guttman et al. (1988) derived confidence limits for P(X<Y |z, w) with explanatory

variables 2 and w under the presumption that & and & are mutually independent and

normally distributed. However, in this paper we consider a Mann-Whitney type statistic to
estimate the reliability.

Park (1995) has considered the problem of estimating P(X<Y |z, w) using the
Mann-Whitney type statistic. Here, the errors & and & are not necessarily normal. Suppose

that (X;, z;) and (Y}, w;), i=1,..,m, j=1,..,n are from the models in (1.1), and let

z=m! ﬁl 2z, and w=n""! Z”:I w;. Let P()=P(X<Ylz, w), where 8= (u,v,8 ,7 ) .
1= J=
In view of (1.1), we can write
P(8)=P(6—e<—p+v— B (z— 2)+ 7 (w— w))=P(8—e<x),
where x=—p+v— B (z2— 2)+ 7 (w— w).
Providing that u,v, 8 and 7y are known, P(@) can be estimated by

U0)=(mn) 13 anll(di—ej<x)=(mn) 1y

n
=1 j= =1 j=

Ui,

where [ denotes the indicator function and U ;= I(8;—¢;<x).

However, since we do not know the true errors §; and &; as well as the parameters

u#,v,B and 7, we have to estimate those. Let ?=( a2, v, ’B\ , ’7\ )" be the least

squares  estimators of 8§, and &§; and & be the residuals computed by
S=Xi—a— B (z—2) and &§=Y,—i— 7 ( w,— w). Then an estimator of
P(8) is given as the following :

00 )= (mn) "lg 2 I( 8i— &< x)=(mn) —1‘2':

1 =1

U3,

n
=1

1J
where *=—ja+v— B (2—2)+ 7 (w— w) and O;=I( §,— &< x).
She has also shown that VN[ O ?)—P( 0 )] is asymptotically normal when N=m+n

and proposed some estimators of the asymptotic variance of O ( /0\) following the ideas of
Mee (1990) and Sen (1967). Using the consistency of such estimators, we obtain
distribution-free confidence intervals for P( 8).

In Section 2, we review some regularity conditions for the asymptotic normality of
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VN[ O¢( ?)-—P(ﬂ )] and some estimators of the asymptotic variance of O /0\), and

construct distribution-free confidence intervals for P(8). In Section 3, we apply our

confidence bounds to the Rocket-Motor data and compare the results to those of Guttman et
al. (1988), and some Monte Carlo simulations are conducted to evaluate the performance of

confidence intervals for various sample sizes, P(@) and the distributions of errors.

2. Estimation for P(X<Y |z, w)
Throughout the sequel, we will make use of the following notations.
Z=( Rly R,y ooy Zm)'v W=( w,, wy, .-, wn)l’
Z=(El ;""! ;)‘and TW:(E, ;;)’”v E)"
where Z and Z are mXp matrices and Wand Ware 7Xg matrices.

To derive asymptotic results for U 79\), Park (1995) imposed the following conditions.

Condition A :@ For a real number o in the interval (0,1), m/N—p and n/N—-1—p,as

N—oo,

Condition B : sup ,{IF ()| +IF ()| +IG ()| +1G " (2)| }< 0.

Condition C : z—&, m ! 21( 2;— 2z ) z;— z) =", as m—®
£

and

_ o — — .
w—&, n 121( wi— w) w— w) —I, as n—o,
=

where &€R?, &R and I', and I', are pxp and ¢Xg positive definite matrices,

respectively. Moreover, assume that, as m,n —0,

max j<icp lm Y2 z;— Z)I—=0 and max i<j<q 12 V2 w;— w)l—0,

where || « Il denotes an Euclidean norm.

Under the above conditions Park (1995) established the asymptotic normality of
VN[ O¢( ?)—P(O )] as follows :
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VNl 0(8)-P8)] 2 N, 3, @1

where
=07 JU-GUt-0)2dF(1)-P(0)+(2-£&) T, (2=£)(H (x)? o’]
+ (-0 [ [FUt+0)dG(N~P(0)+(w—8&) T, (w—£)(H (x)* r’]

and H(x)=P(8—e<{x).
The above fact implies that to obtain the estimator producing small asymptotic variance, one
should choose the design vectors whose arithmetic means are close to given points

2 and w.
To carry out statistical inference, one should estimate the asymptotic variance 2. For the
sake of convenience, let p=P(U;Uxz=1) and p,=P(U;Uzp=1). Note that

p1=fF2(t+x)dG(t) and p2=f(1—G(t—x))2dF(t). It is known in Park (1995) that

under Conditions A, B and C,

A | 1 j==] ke P)

1 mn(m—1) - £

5 iz=:1 El kg;‘ 0; Oa ? (2.2)
2 mn(n—1) — 2

and

s H(x+h—H(x=h p .-
= x 5T X __’H(x),

where H(x)= ﬁ éll( 8;— &<x)/mn and h is a bandwidth of order N®,—1/2< 5<0.

j=] §
In addition,

m ~ —_ —\2
2(Xi—i— B (2z—2) ’

=
(m—p—1) -
and 2.3)
S (Y-9— 7 (w- )
?2_ P AR 4 Y 4 w,— w p

(n—qg—1)
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are well-known.
From (2.1) - (2.3), Park (1995) obtained the VN-consistent asymptotic variance estimator

for OX( ?) in Theorem 3.3.3 denoted as 2, The asymptotic variance estimator of O( ’é\)

consists of two parts. One is from U( @ ) and the other is from the regression coefficient

estimators. In 3, the variance estimator of VNU( 8 ) is given by
A 2 PN —_2
v=L[ - 008+ - 0] .

Mee (1990) pointed out that providing m,n, 8 and 7 are known, ¥, is a negatively biased
estimator of variance for YNU( @ ). As a result, £, may have negative values at small m

and »n when U( /0\) is near to 0 or 1. In order to overcome this defectness, Park (1995)

suggested to use unbiased or positively biased estimator of variance for VNU( @ ). Hence
following the ideas of Mee (1990) and Sen (1967), one might consider the following remark,

which propose estimators of varance for VN [ O« B8)-pP(0 )] .

Remark Under Conditions A, B and C,
% = Gr=dmpl D (A= 0O )+ Gn( fim 0O
+ 0(8)- U(lo)]
+Mz-2) [ (Zz-2)(2-2)] (2-2) # &
tNMw—) [ (W= (W=W)] (w—w) 5 7

and
5, = L[ m-D( A= 0C8))+ 0(8)~ OCF)]
+ _n—(%N——l—)_[ (n—l)( p— O( /0\)2)'*' 0(8)- O ?)2]
+ Mz-2) [ (2-2)(2-2)] (2-2) 3" &
+ Mw—w) [ (=W (w=W] (w-w) 5 7

are consistent estimators of the asymptotic variance for VN[ O¢( /0\) —P(8)] .

Now, we construct distribution-free confidence intervals using the estimators of variance for

0 /0\), which is given in Remark. Suppose that Conditions A, B and C hold. Let 3 be one

of 3, 2, and 3. Then an approximate 100(1 —22)% distribution-free confidence interval

for P(8) is defined by
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VNI 0(8)-pP(9)] <z, 3"

where Z, is the upper 100e% quantile of the standard normal distribution,

3. Real Examples and Simulation Results

In this section, our estimate and confidence intervals are compared to those which are
obtained by Guttman et al. (1988). First we are going to apply our results to real data sets
by Rocket-Motor experiment. These are very well-known data, Y is the chamber burst

strength of a Rocket-Motor case and X is the operating pressure, which is the stress the
motor must withstand. From a designed experiment, temperature 2z is the explanatory

variable which affect operating pressure X. The data set (with sample sizes m=51,n=17)

is given in Guttman et al. (1988).
we compute owr estimate and lower confidence bounds and those under the normal
assumption. From Table 3.1, we obtain the results applied to the real data. In Table 3.1,

R( ?) is the estimate of P(@) by Guttman et al. (1988) under the normal assumption
when %/d® is unknown. Further, LCB; and LCB, are the lower confidence bounds

corresponding to the asymptotic variance estimates for P(8) being 2,‘ and 23,
respectively. LCBj is the approximate lower confidence bound for P( 6) by Guttman et al.

(1988) under the normal assumption when 22/ & is unknown.
Calculating from the data in Guttman et al. (1988), we find
m=51,n=17, p=1, ¢=0,

4=6.937, B =0.018, p=16.485, 5°=0.056, *=0.341,

Z=11.824, 3 2" =120291.

Our estimate 0 ’0\) and R( ?) have similar values. Except for the cases

z2=1530, 540, whose lower confidence bounds are near to zero, our lower confidence bounds

LCB,) and LCB, have larger values than LCBj; under the normal assumption. Throughout,
LCB; and LCB, have almost same values with LCB, being slightly smaller than LCB,
due to slightly larger estimate of variance for J( 79\).

We can also observe that all the lower bounds are largest in the neighborhood where 2z is

given near to 2z and gradually decrease as z is far from 2. This reveals the fact that as
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z and w are far from z and w, they contribute largely to increase estimates of variance
for P(@), as one can verify from 3, and $  in Remark. As a result, our confidence

bounds decrease more rapidly than that under the normal assumption as they are close to 0.

Table 3.1 Comparison of estimates and 95% lower confidence bounds for

P(X{Y |z, w) with those under the normal assumption for Rocket-Motor
experiment.

estimates lower confidence bounds

410 1.000 1.000 | 1.000 1.000 0.993
420 1.000 1.000 | 0.999 0.99 0.987
430 1.000 0999 | 0997 0.997 0.976
440 0.999 0.998 | 0992 0.992 0.958
450 0.997 0.995 | 0.980 0.980 0.929
460 0.992 0.989 | 0.957 0.956 0.887
470 0.982 0977 |0.925 0.925 0.828
480 0.955 0.956 | 0.855 0.855 0.750
490 0.932 0923 | 0.784 0.784 0.655
500 0.905 0872 | 0678 0.678 0.548
510 0.840 0.802 | 0.543 0.542 0.434
520 0.708 0.713 | 0.339 0.339 0.324
530 0.571 0608 | 0.155 0.155 0.225
540 0.452 0.495 | 0.035 0.035 0.145

In this section, we also evaluate the confidence intervals presented in Section 2 through
simulation. The simulation studies were performed by using IBM/PC 486DX2-66-S, and IMSL
was utilized to generate random numbers and to compute the regression estimates.

Monte Carlo studies are performed for investigating the adequacy of two confidence interval
methods given in Section 2. The distributions of errors under the consideration are as follows:

Case 1 : 8,e~N(0,1)
Case 2 : 8~0.95N(0,1) +0.05N(0,3%) and &~0.95N(0,1)+0.05N(0,10%)

Case 3 : 6,e~0.9N(0,1)+0.1N(0, 10%)
As one can see, we consider the standard normal distributions in Case 1 and the

variance-contaminated normal distributions in Cases 2 and 3. For all such cases, both & and
€ have symmetric and unimodal distributions. Thus, every 8—e¢& have symmetric distributions
which are unimodal.

Regression parameters m,#, 8 and 7 are chosen so that P(X<Y |z, w) takes the values

of 0.1,0.2,..,0.9. For the sake of convenience, we only consider the simple linear
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regression models for X and Y. We set v=2P(8)u, B=2u and y=2v, and take both

z; and w; as * (i—1)/m,i=1,2,.., m/2, symmetrically around the point zero. For

each case, we try simulation when z= z=0 and w= w=0.

The equally chosen sample sizes m and » range from 10 to 80, and bandwidth # is
selected as (m+#) %%, The number of pairs of samples generated for each combination of
P(0) and m(=n) is 1000.

Throughout the Tables 3.2 - 3.4, the results are reported both without continuity correction
and with continuity correction. The employed methods 1(1°) and 2(2°) represent those from
the confidence bounds based on the estimates of the variance Eu and Ss, which are given in
Remark, without(with) continuity correction. In addition, the results denoted as ‘normal’
represent those based on the confidence intervals by Guttman et al. (1988).

For each combination of sample size and P( @), the proportion of 95% lower confidence
bounds that fall below P(8) is calculated. The coverage is reported only for one-sided lower
confidence bounds because an upper bound at P(8) will perform identically with a lower

bound at 1—P( 8).

Tables 32 - 3.4 by methods named 1,12 and 2° display the simulated coverage levels

without any distributional assumption. From those, we can make the comments as follows :

{11 The methods with continuity correction yield slightly higher coverage levels than those
without continuity correction at the sample sizes 10 and 20. However, for the sample sizes
40 and 80, the effect of continuity correction is not remarkable.

(2] Every method ultimately yields the coverage levels close to the nominal level as sample
size increases. Even in the case of the sample size being equal to 10, the coverage level

is moderately close to the nominal 0.95 level unless P(8) is near to 1.
(3] In general, as sample sizes come to small and P(8) is near to 1, the coverage

discrepancy increases. To reduce this discrepancy, using the lower bounds by method 2°¢

is preferable since this method has a effect of increasing confidence levels due to the
continuity correction and slightly larger estimate of the variance.

(4] All the lower confidence bounds have desirable performance for all the applied
distributions. As a result, even though errors are not from normal distributions, we have
adequate coverages for the distributions with moderately or extremely heavy tails, unless

sample size is small and P( @) is near to 1.
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The figures in Tables 32 - 34 obtained by the method ‘normal’ denote the lower
confidence bounds yielded by the method of Guttman et al. (1988). From these simulation
results, we make the following reports :

[1] On the whole, at P(8) near to 0.5, the simulated coverage level is closest to the nominal

coverage level. As P(@) is far from 05, the simulated coverage level also tends to

deviate for each case of the variance—contaminated normal errors.
[2] As sample size increases, the coverage discrepancy from 0.95 nominal coverage level
increases in almost all cases of the variance-contaminated normal errors.

From the above, we conclude that the parametric method of Guttman et al. (1988) performs
better than our nonparametric method when the errors are from normal distributions.

On the other hand, as one can see from Tables 3.3 - 3.4, when the true errors are from
heavy tailed distributions, the method of Guttman et al. (1988) has severe defectness since the
coverage level is rapidly apart from the nominal coverage level as sample size increases.

However, our estimation procedures hold successfully when the errors have distributions
with moderately or extremely heavier tails than those of normal distributions, in respect that
our confidence intervals yield the coverage levels closer to the nominal coverage level than
those produced by Guttman et al. (1988). Further, our confidence intervals gradually tend to
have nominal coverage level as sample size increases. So, our results are useful for handling
heavy tailed nonnormal distributions.
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Table 3.2 Simulated coverage level of 95% lower confidence bounds for
P(X<{Y |z= z, w= w) when 8,& ~ N(0,1)

m=n method P(X(Y |z=z, w= w)
01 02 03 04 05 06 07 08 09
10 1 994 980 964 953 943 902 872 811 700
10 2 994 980 966 956 945 906 878 817 .733
10 1° 994 980 966 954 944 907 876 817 .700
10 2¢ 096 981 969 958 948 911 834 824 733
10 normal 952 952 950 95 940 951 942 949 958
20 1 986 972 968 951 940 928 914 .883 817
20 2 98 974 969 952 941 931 919 890 .822
20 1° 986 974 969 951 941 931 917 888 .821
20 2¢ 986 976 969 953 942 933 920 893 .829
20 normal 957 951 955 941 935 938 949 941 948
40 1 974 976 957 963 939 941 929 895 .871
40 2 976 977 959 964 941 942 929 895 .873
40 1° 976 977 957 963 940 941 929 895 .873
40 2°¢ 977 977 961 965 941 942 930 8% 875
40 normal 961 944 944 951 953 953 942 941 944
80 1 979 967 964 943 945 942 927 923 898
80 2 979 967 965 943 945 943 927 925 .899
80 1° 979 967 965 943 945 942 927 924 899
80 2¢ 979 967 965 944 945 943 927 925 900
80 normal D40 962 951 953 958 949 951 953 953
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Table 3.3 Simulated coverage level of 95% lower confidence bounds for
P(X<Y |z= z, w= w) when 6~0.95N(0,1)+0.05N(0,3%) and
e~0.95N(0, 1) +0.05N(0, 10%)

m=n method P(X{Y|z=z, w=w)

01 02 03 04 05 06 07 08 09
10 1 959 965 934 958 916 900 866 .827 .684
10 2 961 966 942 961 922 903 870 833 726
10 1€ 962 966 938 960 921 903 870 .834 684
10 2° 964 967 945 961 924 906 .88l 842 726
10 normal 908 921 948 968 949 909 766 616 549
20 1 965 951 944 957 938 935 928 898 810
20 966 955 946 959 938 937 930 .902 818
20 1° 966 955 945 959 938 937 920 899 8Il
20 2° 968 957 950 961 939 941 930 904 826
20 normal 867 910 941 963 956 871 728 605 .485
40 1 965 958 945 949 956 939 937 929 .888
40 2 967 962 946 950 956 941 937 932 889
40 1° 967 959 946 950 956 940 937 931 889
40 2° 967 963 946 950 956 942 938 932 891
40 normal 842 890 931 948 953 846 721 637 556
80 1 966 955 949 959 944 961 943 926 904
80 2 966 956 951 959 946 962 944 928 905
80 1° 966 956 949 959 945 961 944 926 905
80 2° 966 956 952 959 947 962 945 928 905
80 normal 798 846 884 939 950 873 774 683 631
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Table 3.4 Simulated coverage level of 95% lower confidence bounds for
P(X<Y |z= z, w= w) when &¢& ~ 0.9N(0,1)+0.1N(0,102)

m=n method P(X<Y|z=z, w= w)

01 02 03 04 05 06 07 08 09
10 1 937 909 940 946 951 928 917 842 .707
10 2 938 912 942 952 957 934 926 84 721
10 1° 941 912 943 949 957 934 927 857 .707
10 2°¢ 942 918 945 954 960 938 933 .865 .721
10 normal 998 998 996 997 948 739 516 .407 .329
20 1 925 917 942 946 952 946 941 905 842
20 2 926 920 945 948 956 947 941 908 .842
20 1° 926 919 944 948 955 946 941 907 .842
20 2°¢ 927 920 947 951 957 948 944 910 .845
20 normal 1.000 1.000 1.000 994 954 694 378 255 .179
40 1 937 914 940 941 953 948 948 939 918
40 2 938 916 940 941 953 948 950 939 918
40 1° 938 915 940 941 953 948 949 939 918
40 2°¢ 938 916 940 941 955 948 954 940 920
40 normal 1000 999 998 999 946 595 248 .103 .052
80 1 936 933 940 941 947 944 954 945 892
80 936 935 941 941 948 944 954 945 895
80 1° 936 934 941 941 947 944 954 945 894
80 2°¢ 937 935 942 942 950 944 955 946 895
80 normal 1.000 1.000 1.000 999 942 427 075 019 .003
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