• 제목/요약/키워드: Error-Resilient

Search Result 78, Processing Time 0.032 seconds

RECONSTRUCTION OF LIMITED-ANGLE CT IMAGES BY AN ADAPTIVE RESILIENT BACK-PROPAGATION ALGORITHM

  • Kazunori Matsuo;Zensho Nakao;Chen, Yen-Wei;Fath El Alem F. Ah
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.839-842
    • /
    • 2000
  • A new and modified neural network model Is proposed for CT image reconstruction from four projection directions only. The model uses the Resilient Back-Propagation (Rprop) algorithm, which is derived from the original Back-Propagation, for adaptation of its weights. In addition to the error in projection directions of the image being reconstructed, the proposed network makes use of errors in pixels between an image which passed the median filter and the reconstructed one. Improved reconstruction was obtained, and the proposed method was found to be very effective in CT image reconstruction when the given number of projection directions is very limited.

  • PDF

Error Resilient Video Coding Techniques Using Multiple Description Scheme (다중 표현을 이용한 에러에 강인한 동영상 부호화 방법)

  • 김일구;조남익
    • Journal of Broadcast Engineering
    • /
    • v.9 no.1
    • /
    • pp.17-31
    • /
    • 2004
  • This paper proposes an algorithm for the robust transmission of video in error Prone environment using multiple description codingby optimal split of DCT coefficients and rate-distortionoptimization framework. In MDC, a source signal is split Into several coded streams, which is called descriptions, and each description is transmitted to the decoder through different channel. Between descriptions, structured correlations are introduced at the encoder, and the decoder exploits this correlation to reconstruct the original signal even if some descriptions are missing. It has been shown that the MDC is more resilient than the singe description coding(SDC) against severe packet loss ratecondition. But the excessive redundancy in MDC, i.e., the correlation between the descriptions, degrades the RD performance under low PLR condition. To overcome this Problem of MDC, we propose a hybrid MDC method that controls the SDC/MDC switching according to channel condition. For example, the SDC is used for coding efficiency at low PLR condition and the MDC is used for the error resilience at high PLR condition. To control the SDC/MDC switching in the optimal way, RD optimization framework are used. Lagrange optimization technique minimizes the RD-based cost function, D+M, where R is the actually coded bit rate and D is the estimated distortion. The recursive optimal pet-pixel estimatetechnique is adopted to estimate accurate the decoder distortion. Experimental results show that the proposed optimal split of DCT coefficients and SD/MD switching algorithm is more effective than the conventional MU algorithms in low PLR conditions as well as In high PLR condition.

Channel Error Detwction and Concealment Technqiues for the MPEG-2 Video Standard (MPEG-2 동영상 표준방식에 대한 채널 오차의 검출 및 은폐 기법)

  • 김종원;박종욱;이상욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.10
    • /
    • pp.2563-2578
    • /
    • 1996
  • In this paper, channel error characteristics are investigated to alleviate the channel error propagation problem of the digital TV transmission systems. First, error propagation problems, which are mainly caused by the inter-frame dependancy and variable length coding of the MPEG-2 baseline encoder, are intensively analyzed. Next, existing channel resilient schemes are systematically classified into two kinds of schemes; one for the encoder and the other for the decoder. By comparing the performance and implementation cost, the encoder side schemes, such as error localization, layered coding, error resilience bit stream generation techniques, are described in this paper. Also, in an effort to consider the parcticality of the real transmission situation, an efficient error detection scheme for a decoder system is proposed by employing a priori information of the bit stream syntas, checking the encoding conditions at the encoder stage, and exploiting the statistics of the image itself. Finally, subsequent error concealment technique based on the DCT coefficient recovery algorithm is adopted to evaluate the performance of the proposed error resilience technique. The computer simulation results show that the quality of the received image is significantly improved when the bit error rate is as high as 10$^{-5}$ .

  • PDF

Resilient Routing Protocol Scheme for 6LoWPAN (6LoWPAN에서 회복력 있는 라우팅 프로토콜 기법)

  • Woo, Yeon Kyung;Park, Jong Tae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.141-149
    • /
    • 2013
  • IETF 6LoWPAN standard technique has been studied in IoT environment to support the IPv6 packet communication. 6LoWPAN protocol for transmission of packets mainly in the AODV routing protocol and a variety of extended techniques have been investigated. In particular, consisting of nodes with limited resources in a network error occurs when the 6LoWPAN reliable data transfer and fast routing method is needed. To this end, in this paper, we propose resilient routing protocol and extension of IETF LOAD algorithm, for optimal recovery path, More specifically, the optimal recovery path setup algorithm, signal flow, and detailed protocols for the verification of the reliability of packet transmission mathematical model is presented. The proposed protocol techniques to analyze the performance of the NS-3 performance through the simulation results that is end-to-end delay, throughput, packet delivery fraction and control packet overhead demonstrated excellence in comparison with existing LOAD.

Bandwidth Efficient Adaptive Forward Error Correction Mechanism with Feedback Channel

  • Ali, Farhan Azmat;Simoens, Pieter;de Meerssche, Wim Van;Dhoedt, Bart
    • Journal of Communications and Networks
    • /
    • v.16 no.3
    • /
    • pp.322-334
    • /
    • 2014
  • Multimedia content is very sensitive to packet loss and therefore multimedia streams are typically protected against packet loss, either by supporting retransmission requests or by adding redundant forward error correction (FEC) data. However, the redundant FEC information introduces significant additional bandwidth requirements, as compared to the bitrate of the original video stream. Especially on wireless and mobile networks, bandwidth availability is limited and variable. In this article, an adaptive FEC (A-FEC) system is presented whereby the redundancy rate is dynamically adjusted to the packet loss, based on feedback messages from the client. We present a statistical model of our A-FEC system and validate the proposed system under different packet loss conditions and loss probabilities. The experimental results show that 57-95%bandwidth gain can be achieved compared with a static FEC approach.

Error Resilient MPEG-4 Encoding Method (오류 내성을 갖는 MPEG-4 부호화 기법)

  • 현기수;문지용;김기두;강동욱
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.105-109
    • /
    • 2002
  • The main ideas of hybrid video coding methods are to reduce the spatial and temporal redundancy for efficient data compression. If compressed video stream is transmitted through the error-prone channel, bitstream can be critically damaged and the spatio-temporal error propagates through successive frames at the decoder because of drift noise in the references between encoder and decoder. In this paper, I propose the lagrangian multiplier selection method in the error-prone environment. Finally, it is shown that the performance comparisons of the R-D optimized mode decision are made against the conventional method and simulation results are given in the following.

  • PDF

Error Concealment Techniques for Visual Quality Improving (화질 향상을 위한 오류 은폐 기법)

  • Suh, Jae-Won
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.2
    • /
    • pp.65-74
    • /
    • 2006
  • The MPEG-2 video compressed bitstream is very sensitive to transmission errors due to the complex coding structure of the MPEG-2 video coding standard. If one packet is lost or received with errors, not only the current frame will be corrupted, but also errors will propagate to succeeding frames within a group of pictures. Therefore, we employ various error resilient coding/decoding techniques to protect and reduce the transmission error effects. Error concealment technique is one of them. Error concealment technique exploits spatial and temporal redundancies of the correctly received video data to conceal the corrupted video data. Motion vector recovery and compensation with the estimated motion vector is good approach to conceal the corrupted data. In this paper, we propose various error concealment algorithms based on motion vector recovery, and compare their performance to those of conventional error concealment methods.

  • PDF

Rate-Distortion Oprimized Error-Resilient Intra Update in MPEG-4 Video Coding (MPEG-4 동영상 압축에서 비트율과 오류 내성을 고려한 인트라 업데이트)

  • Kim, Woo-Shik;Park, Rae-Hong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.6
    • /
    • pp.591-601
    • /
    • 2002
  • Motion compensation is a powerful method to compress an image sequence. Its main drawback is that once an error is occurred, the error propagates through the frames. Recently, the intra update method was proposed to stop the error propagation at the expense of reduction in compression efficiency. This paper proposes an intra update method based on a rate-distortion optimization in error prone environments. The rate and the distortion are estimated using the Lagrangian optimization to select the coding mode and the quantization step size. The proposed method is applied to MPEG-4 codec, and the experimental results show that it is robust to the error such as packet losses comparing with the conventional ones.

Analysis of Reduced-Width Truncated Mitchell Multiplication for Inferences Using CNNs

  • Kim, HyunJin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.5
    • /
    • pp.235-242
    • /
    • 2020
  • This paper analyzes the effect of reduced output width of the truncated logarithmic multiplication and application to inferences using convolutional neural networks (CNNs). For small hardware overhead, output width is reduced in the truncated Mitchell multiplier, so that fractional bits in multiplication output are minimized in error-resilient applications. This analysis shows that when reducing output width in the truncated Mitchell multiplier, even though worst-case relative error increases, average relative error can be kept small. When adopting 8 fractional bits in multiplication output in the evaluations, there is no significant performance degradation in target CNNs compared to existing exact and original Mitchell multipliers.

Error Resilient Interlace to Progressive Conversion Algorithm for Noisy Image (잡음영상에 강한 IPC(Interlace to Progressive Conversion) 알고리즘)

  • Kim, Yeong-Ro;Hong, Byeong-Gi
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1153-1154
    • /
    • 2008
  • 본 논문에서는 ELA(Edge Line based Average) 알고리즘이 잡음 영상에서 IPC할 때 생기는 문제점을 개선하는 알고리즘을 제안한다. 먼저 잡음을 제거하는 필터링과 동시에 잡음이 없는 원화소의 크기와 잡음의 크기를 추정한다. 이에 따라 잡음의 크기를 고려하여 ELA 방법과 수직보간 방법에 가중치를 주어 보간값을 구한다. 이 후 잡음이 존재할 경우 포스트 필터링(Post Filtering)을 거쳐 잔재해 있는 잡음을 제거해준다. 실험결과 제안하는 알고리즘이 기존 ELA 알고리즘들 보다도 향상된 결과를 보인다.

  • PDF