• Title/Summary/Keyword: Error management system assessment

Search Result 47, Processing Time 0.026 seconds

Selection of Auditory Icons in Ship Bridge Alarm Management System Using the Sensibility Evaluation (감성평가를 이용한 선교알람관리시스템의 청각아이콘 평가)

  • Oh, Seungbin;Jang, Jun-Hyuk;Park, Jin Hyoung;Kim, Hongtae
    • Journal of Navigation and Port Research
    • /
    • v.37 no.4
    • /
    • pp.401-407
    • /
    • 2013
  • In parallel with the development of ship equipment, bridge systems have been improved, but marine accidents due to human error have not been reduced. Recently, research in nautical bridge equipment has focused on suitable ergonomic designs in order to reduce these errors due to human factors. In a bridge of a ship, there are numerous auditory signals that deliver important information clearly to the sailors. However, only a few studies have been conducted related to the human recognition of these auditory signals. There are three types of auditory signals: voice alarms, abstract sounds, and auditory icons. This study was conducted in order to design more appropriate auditory icons using a sensibility evaluation method. The auditory icons were rated to have five warning situations (engine failure, fire, steering failure, low power, and collision) using the Semantic Differential Method. It is expected that the results of this study will be used as basic data for auditory displays inside bridges and for integrated bridge alarm systems.

Management of asymptomatic to mild COVID-19 patients with Cheongpebaedok-tang on the telemedical basis: A retrospective observational case series

  • Sung-Woo Kang;Kwan-Il Kim;Mideok Song;Jinhwan Roh;Namhun Cho;Heung Ko;Sung-Se Son;Minjeong Jeong;Jun-Yong Choi;Ojin Kwon;Seojung Ha;Hee-Jae Jung;Beom-Joon Lee
    • The Journal of Korean Medicine
    • /
    • v.44 no.4
    • /
    • pp.41-58
    • /
    • 2023
  • Objectives: This retrospective observational study aimed to investigate the efficacy and safety of Cheongpebaedok-tang, a traditional Korean herbal medicine, provided via telemedicine to patients with asymptomatic to mild COVID-19 in Korea. Methods: From February to April 2020, a retrospective analysis investigated COVID-19 patients treated via Korean telemedicine. The study involved asymptomatic to mild cases receiving Cheongpebaedok-tang more than three times, along with continuous Korean medicine care in convalescence. Diagnoses and treatment adhered to the telemedicine guidelines of the Association of Korean Medicine, with varied Cheongpebaedok-tang prescriptions based on symptom severity. Symptom evaluation involved a detailed assessment using a 15-item tool at initial and final sessions. Results: The study included 27 patients, with a mean age of 48.7 ± 2.3 years (mean ± standard error). Patients began self-administering oral Cheongpebaedok-tang for an average of 19.4 ± 1.8 days after the date of COVID-19 diagnosis confirmation and continued the medication for 15.8 ± 1.2 days. The reported side effects of the Cheongpebaedok-tang included palpitations (11.1%), insomnia (7.4%), dizziness (3.7%), and diarrhea (3.7%). All side effects disappeared after adjusting the prescription according to standard treatment guidelines. The occurrence of all COVID-19-related adverse symptoms, except fatigue and myalgia, decreased. Fatigue was the most common chronic symptom persisting after 6 months (51.9%), followed by ocular symptoms (37.0%) and sore throat (22.2%). Conclusions: This study implies Cheongpebaedok-tang may offer a potentially safe, symptom-alleviating approach for managing mild COVID-19 cases via telemedicine, although further comprehensive research is warranted.

Large Scale SWAT Watershed Modeling Considering Multi-purpose Dams and Multi-function Weirs Operation - For Namhan River Basin - (다목적 댐 및 다기능 보 운영을 고려한 대유역 SWAT 모형 구축기법 연구 - 남한강 유역을 대상으로 -)

  • Ahn, So Ra;Lee, Ji Wan;Jang, Sun Sook;Kim, Seong Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.4
    • /
    • pp.21-35
    • /
    • 2016
  • This study is to evaluate the applicability of SWAT (Soil and Water Assessment Tool) model for multi-purpose dams and multi-function weirs operation in Namhan river basin ($12,577km^2$) of South Korea. The SWAT was calibrated (2005 ~ 2009) and validated (2010 ~ 2014) considering of 4 multi-purpose dams and 3 multi-function weirs using daily observed dam inflow and storage, evapotranspiration, soil moisture, and groundwater level data. Firstly, the dam inflow was calibrated by the five steps; (step 1) the physical rate between total runoff and evapotranspiration was controlled by ESCO, (step 2) the peak runoff was calibrated by CN, OV_N, and CH_N, (step 3) the baseflow was calibrated by GW_DELAY, (step 4) the recession curve of baseflow was calibrated by ALPHA_BF, (step 5) the flux between lateral flow and return flow was controlled by SOL_AWC and SOL_K, and (step 6) the flux between reevaporation and return flow was controlled by REVAPMN and GW_REVAP. Secondly, for the storage water level calibration, the SWAT emergency and principle spillway were applied for water level from design flood level to restricted water level for dam and from maximum to management water level for weir respectively. Finally, the parameters for evapotranspiration (ESCO), soil water (SOL_AWC) and groundwater level fluctuation (GWQMN, ALPHA_BF) were repeatedly adjusted by trial error method. For the dam inflow, the determination coefficient $R^2$ was above 0.80. The average Nash-Sutcliffe efficiency (NSE) was from 0.59 to 0.88 and the RMSE was from 3.3 mm/day to 8.6 mm/day respectively. For the water balance performance, the PBIAS was between 9.4 and 21.4 %. For the dam storage volume, the $R^2$ was above 0.63 and the PBIAS was between 6.3 and 13.5 % respectively. The average $R^2$ for evapotranspiration and soil moisture at CM (Cheongmicheon) site was 0.72 and 0.78, and the average $R^2$ for groundwater level was 0.59 and 0.60 at 2 YP (Yangpyeong) sites.

Development of a Software for Re-Entry Prediction of Space Objects for Space Situational Awareness (우주상황인식을 위한 인공우주물체 추락 예측 소프트웨어 개발)

  • Choi, Eun-Jung
    • Journal of Space Technology and Applications
    • /
    • v.1 no.1
    • /
    • pp.23-32
    • /
    • 2021
  • The high-level Space Situational Awareness (SSA) objective is to provide to the users dependable, accurate and timely information in order to support risk management on orbit and during re-entry and support safe and secure operation of space assets and related services. Therefore the risk assessment for the re-entry of space objects should be managed nationally. In this research, the Software for Re-Entry Prediction of space objects (SREP) was developed for national SSA system. In particular, the rate of change of the drag coefficient is estimated through a newly proposed Drag Scale Factor Estimation (DSFE), and is used for high-precision orbit propagator (HPOP) up to an altitude of 100 km to predict the re-entry time and position of the space object. The effectiveness of this re-entry prediction is shown through the re-entry time window and ground track of space objects falling in real events, Grace-1, Grace-2, Tiangong-1, and Chang Zheng-5B Rocket body. As a result, through analysis 12 hours before the final re-entry time, it is shown that the re-entry time window and crash time can be accurately predicted with an error of less than 20 minutes.

Evaluation of satellite-based evapotranspiration and soil moisture data applicability in Jeju Island (제주도에서의 위성기반 증발산량 및 토양수분 적용성 평가)

  • Jeon, Hyunho;Cho, Sungkeun;Chung, Il-Moon;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.835-848
    • /
    • 2021
  • In Jeju Island which has peculiarity for its geological features and hydrology system, hydrological factor analysis for the effective water management is necessary. Because in-situ hydro-meteorological data is affected by surrounding environment, the in-situ dataset could not be the spatially representative for the study area. For this reason, remote sensing data may be used to overcome the limit of the in-situ data. In this study, applicability assessment of MOD16 evapotranspiration data, Globas Land Data Assimilation System (GLDAS) based evapotranspiration/soil moisture data, and Advanced SCATterometer (ASCAT) soil moisture product which were evaluated their applicability on other study areas was conducted. In the case of evapotranspiration, comparison with total precipitation and flux-tower based evapotranspiration were conducted. And for soil moisture, 6 in-situ data and ASCAT soil moisture product were compared on each site. As a result, 57% of annual precipitation was calculated as evapotranspiration, and the correlation coefficient between MOD16 evapotranspiration and GLDAS evapotranspiration was 0.759, which was a robust value. The correlation coefficient was 0.434, indicating a relatively low fit. In the case of soil moisture, in the case of the GLDAS data, the RMSE value was less than 0.05 at all sites compared to the in-situ data, and a statistically significant result was obtained as a result of the significance test of the correlation coefficient. However, for satellite data, RMSE over than 0.05 were found at Wolgak and there was no correlation at Sehwa and Handong points. It is judged that the above results are due to insufficient quality control and spatial representation of the evapotranspiration and soil moisture sensors installed in Jeju Island. It is estimated as the error that appears when adjacent to the coast. Through this study, the necessity of improving the existing ground observation data of hydrometeorological factors is emphasized.

A Study on the Stock Assessment and Management Implications of the Korean Aucha perch (Coreoperca herzi) in Freshwater: (1) Estimation of Population Ecological Characteristics of Coreoperca herzi in the Mid-Upper System of the Seomjin River (담수산 어류 꺽지 (Coreoperca herzi)의 자원 평가 및 관리 방안 연구: 섬진강 중.상류 수계에서 꺽지의 개체군 생태학적 특성치 추정 (1))

  • Jang, Sung-Hyun;Ryu, Hui-Seong;Lee, Jung-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.82-90
    • /
    • 2010
  • The ecological characteristics of the Korean Aucha perch, Coreoperca herzi, were determined in order to estimate stock of the mid-upper system of the Seomjin River. The age was determined by counting the otolith annuli. The oldest fish observed in this study was 5 years old. Relationships between body length (BL) and body weight (BW) were $BW=0.0195BL^{3.08}$ ($R^2=0.966$) (p<0.01). Relationships between the otolith radius (R) and body length (BL) were BL=3.882R+1.66 ($R^2=0.944$). The von Bertalanffy growth parameters estimated from a non-linear regression method were $L_{\infty}=19.68\;cm$, $W_{\infty}=188.64\;g$, $K=0.17\;year^{-1}$ and $t_0=-1.46$ year. Therefore, growth in length of the fish was expressed by the von Bertalanffy's growth equation as $L_t=19.68$ ($1-e^{-0.17(t+1.46)}$) ($R^2=0.997$). The annual survival rate (S) was estimated to be $0.666\;year^{-1}$. The instantaneous coefficient of natural mortality (M) of estimated from the Zhang and Megrey method was $0.346\;year^{-1}$, and instantaneous coefficient of fishing mortality (F) was calculated $0.061\;year^{-1}$. From the estimates of survival rate (S), the instantaneous coefficient of total mortality(Z) was estimated to be $0.407\;year^{-1}$.

DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA (한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발)

  • 박만배
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF