• Title/Summary/Keyword: Error level

Search Result 2,511, Processing Time 0.035 seconds

A Study on the Propagation Prediction Model of Wireless Communication in an Urban Area (도심지 무선통신의 전파예측모델에 관한 연구)

  • 정성한;배성수;오영환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.12A
    • /
    • pp.1883-1890
    • /
    • 1999
  • Wireless communication in an urban area, the accurate prediction of wave propagation characteristics are very important to determine communication service areas, select optimal base-stations, and design cells, etc. The CCIR model is a propagation prediction model using a shadowing by the buildings in an urban area. This model represent the shadowing rate by the means of the effect of shadowing between base-station and mobile unit in a shaped linear plane. But, This one occurred a lot of prediction error because it did not consider that density area by the buildings and terrain configurations by the hill and mountain on Line-Of-Sight. In this thesis, an improved propagation prediction model is proposed to reduce prediction error. We presents a new equation, which is using the SAS. This equation is associated with the shadow height by the buildings that considers the topology and the number of blocks that can affect the building shadow in the Line-Of-Sight. We measure the received electrical field level of base-station that high density area, medium density area, and low density area, and then compare and analysis the result to prediction of CCIR model and proposed model. The result compared with the measurement, the proposed model has the improvement of 9.71dB in a high density area, 9.66dB in a medium density area, and 4.02dB in a low density area better than the CCIR model. The result compared with the measurement, the proposed model has the improvement of 9.71dB in a high density area, 9.66dB in a medium density area, and 4.02dB in a low density area better than the CCIR model.

  • PDF

Comparison of Digital Filters with Wavelet Multiresolution Filter for Electrogastrogram (위전도 신호처리를 위한 웨이브렌 필터와 디지털 필터의 비교)

  • 유창용;남기창;김수찬;김덕원
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.109-117
    • /
    • 2002
  • Electrogastrography(EGG) is a noninvasive method for measuring gastric electrical activity on the abdomen resulting from gastric muscle. EGG signals have a very low frequency range (0.0083 ~0.15 Hz) and extremely low amplitude(10~100 uV). Consequently, EGG signal is easily influenced by other noises. Both finite impulse response(FIR) and infinite impulse response (IIR) filters need high orders or have phase distortions for passing very narrow bandwidth of the EGG signal. In this study, we decomposed EGG signals using a wavelet multiresolution method with Daubechies mother wavelet. The EGG signals were decomposed to seven levels. We reconstructed signal by summing the decomposed signals from level four to seven. To evaluate the performance of the wavelet multiresolution filter(WMF) with simulated EGG signal using two kinds of FIR and four kinds of IIR filters., we used two indices; signal to noise ratio(SNR) and reconstruction squared error(RSE). The SNR of WMF had 9.5, 6.9, and 4.7 dB bigger than that of the other filters at different noise levels, respectively. Also, The RSE of WMF had $1.22{\times}10^6, 1.16{\times}10^6, 1.02{\times}10^6$ smaller than that of the other filters at different noise levels, respectively. The WMF performed better in the SNR and RSE than two kinds of FIR and four kinds of IIR filters.

A Numerical Study on the Optimization of Urea Solution Injection to Maximize Conversion Efficiency of NH3 (NH3 전환효율 극대화를 위한 Urea 인젝터의 분사 최적화에 관한 수치적 연구)

  • Moon, Seongjoon;Jo, Nakwon;Oh, Sedoo;Jeong, Soojin;Park, Kyoungwoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.171-178
    • /
    • 2014
  • From now on, in order to meet more stringer diesel emission standard, diesel vehicle should be equipped with emission after-treatment devices as NOx reduction catalyst and particulate filters. Urea-SCR is being developed as the most efficient method of reducing NOx emissions in the after-treatment devices of diesel engines, and recent studies have begun to mount the urea-SCR device for diesel passenger cars and light duty vehicles. That is because their operational characteristics are quite different from heavy duty vehicles, urea solution injection should be changed with other conditions. Therefore, the number and diameter of the nozzle, injection directions, mounting positions in front of the catalytic converter are important design factors. In this study, major design parameters concerning urea solution injection in front of SCR are optimized by using a CFD analysis and Taguchi method. The computational prediction of internal flow and spray characteristics in front of SCR was carried out by using STAR-CCM+7.06 code that used to evaluate $NH_3$ uniformity index($NH_3$ UI). The design parameters are optimized by using the $L_{16}$ orthogonal array and small-the-better characteristics of the Taguchi method. As a result, the optimal values are confirmed to be valid in 95% confidence and 5% significance level through analysis of variance(ANOVA). The compared maximize $NH_3$ UI and activation time($NH_3$ UI 0.82) are numerically confirmed that the optimal model provides better conversion efficiency of $NH_3$. In addition, we propose a method to minimize wall-wetting around the urea injector in order to prevent injector blocks caused by solid urea loading. Consequently, the thickness reduction of fluid film in front of mixer is numerically confirmed through the mounting mixer and correcting injection direction by using the trial and error method.

A Study on the Effects of PMV Thermal Environment and Illumination on Visual Performance (PMV 온열 환경과 조도가 시작업 성능에 미치는 영향에 대한 연구)

  • Kim, Hyung-Sun;Kim, Hyoung-Tae;Kim, Hyoung-Sik;Kuwak, Won-Tack;Kim, Jin Ho
    • Science of Emotion and Sensibility
    • /
    • v.17 no.2
    • /
    • pp.55-62
    • /
    • 2014
  • In this study, a questionnaire was developed to assess error search and correction tasks, and an analysis was performed on the accuracy of the tasks and the time required for their completion in order to identify the effects of LED light source illumination on visual performance according to changes in a predicted mean vote(PMV) thermal environment. In addition, a subjective evaluation was performed by conducting a survey on the level of visual fatigue experienced during the tasks. In the experiment, four types of PMV thermal environments were established according to PMV values in the temperature range of $(17{\pm}1-29{\pm}1)^{\circ}C$ and the humidity range of $(50{\pm}5-60{\pm}5)%$, and the LED light source illumination was divided into three types: 400lx, 700lx, and 1000lx. The experimental results confirmed that the accuracy of the error search(LED p value=0.058, PMV*LED p value=0.083) and correction tasks and the time required(LED p value=0.004, PMV p value=0.000) for their completion were affected by changes in both the PMV thermal environment and the LED light source illumination, whereas a significant difference in visual fatigue was observed only in the PMV thermal environment(p value=0.003).

Disease Recognition on Medical Images Using Neural Network (신경회로망에 의한 의료영상 질환인식)

  • Lee, Jun-Haeng;Lee, Heung-Man;Kim, Tae-Sik;Lee, Sang-Bock
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.1
    • /
    • pp.29-39
    • /
    • 2009
  • In this paper has proposed to the recognition of the disease on medical images using neural network. The neural network is constructed as three-layers of the input-layer, the hidden-layer and the output-layer. The training method applied for the recognition of disease region is adaptive error back-propagation. The low-frequency region analyzed by DWT are expressed by matrix. The coefficient-values of the characteristic polynomial applied are n+1. The normalized maximum value +1 and minimum value -1 in the range of tangent-sigmoid transfer function are applied to be use as the input vector of the neural network. To prove the validity of the proposed methods used in the experiment with a simulation experiment, the input medical image recognition rate the evaluation of areas of disease. As a result of the experiment, the characteristic polynomial coefficient of low-frequency area matrix, conversed to 4 level DWT, was proved to be optimum to be applied to the feature parameter. As for the number of training, it was marked fewest in 0.01 of learning coefficient and 0.95 of momentum, when the adaptive error back-propagation was learned by inputting standardized feature parameter into organized neural network. As to the training result when the learning coefficient was 0.01, and momentum was 0.95, it was 100% recognized in fifty-five times of the stomach image, fifty-five times of the chest image, forty-six times of the CT image, fifty-five times of ultrasonogram, and one hundred fifty-seven times of angiogram.

  • PDF

Comparison of ACFAS method and DNPH-LC method for quantitative analysis of formaldehyde in Drinking water (자동연속흐름-흡광광도법과 DNPH-LC법에 의한 먹는물 중 포름알데히드 정량분석 비교)

  • Yi, Geon-Ho;Yun, In-Chul;Kim, Yeong-Kwan;Kim, Chong-Chaul;Choi, Geum-Jong;Lee, Teak-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.827-836
    • /
    • 2013
  • Due to the stringent drinking water quality, formaldehyde will be included in Korean drinking water standard from year 2014. However, its standard analytical method has not yet been established. This study compares two analytical methods, DNPH-LC and ACFAS with respect to their analysis principles, Method Detection Limit (MDL), Limit Of Quantitation(LOQ), precision, accuracy, reproducibility, convenience, number of samples analyzed per hour and analysis cost. These methods measure absorption intensity at 360 nm by using HPLC after DNPH-derivatization (DNPH-LC) and at 410 nm by using Automated Continuous Flow Absorption Spectrophotometer (ACFAS), respectively. Reproducibility was tested by repeating the analysis 7 times using a standard solution for each method. For DNPH-LC method, MDL was $0.5{\mu}g/L$, LOQ was $1.58{\mu}g/L$ with standard deviation of $0.16{\mu}g/L$. For ACFAS method, they were $0.27{\mu}g/L$, $0.85{\mu}g/L$L with standard deviation of $0.09{\mu}g/L$, respectively. Both methods satisfied the requirement set by the Korean drinking water quality standard. Complexity of sample pretreatment procedure for DNPH-LC method may cause large error and, consequently, the analytical result will depend on the level of skill of analyst. In contrast, ACFAS method which used only one reagent equipped with an automated injection device showed little analytical error. It costs about $5.00 and $1.00 for one sample to analyze by the DNPH-LC method and the ACFAS method, respectively. Compared to the DNPH-LC method, ACFAS method provided more reliable analytical results. In terms of convenience, easiness and analytical cost, ACFAS method was demonstrated to be superior to the DNPH-LC method. The results of this study suggested that the ACFAS method could be adapted as a proper method for determining formaldehyde content in drinking water.

Development of an Editor and Howling Engine for Realtime Software Programmable Logic Controller based on Intelligent Agents (지능적 에이전트에 의한 실시간 소프트웨어 PLC 편집기 및 실행엔진 개발)

  • Cho, Young-In
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.12
    • /
    • pp.1271-1282
    • /
    • 2005
  • Recently, PC-based control is incredibly developed in the industrial control field, but it is difficult for PLC programming in PC. Therefore, I need to develop the softeware PLC, which support the international PLC programming standard(IECl131-3) and can be applied to diverse control system by using C language. In this paper, I have developed the ISPLC(Intelligent Agent System based Software Programmable Logic Controller). In ISPLC system, LD programmed by a user which is used over $90\%$ among the 5 PLC languages, is converted to IL, which is one of intermediate codes, and IL is converted to the standard C rode which can be used in a commercial editor such as Visual C++. In ISPLC, the detection of logical error in high level programming(C) is more eaier than PLC programming itself The study of code conversion of LD->IL->C is firstly tried in the world as well as KOREA. I developed an execution engine with a good practical application. To show the effectiveness of the developed system, 1 applied it to a practical case, a real time traffic control(RT-TC) system. ISPLC is minimized the error debugging and programming time owing to be supported by windows application program.

Shipboard Active Phased Array Antenna System for Satellite Communications (위성 통신용 선박 탑재 능동 위상배열 안테나 시스템)

  • 전순익;채종석;오승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.10
    • /
    • pp.1089-1097
    • /
    • 2002
  • In this paper, the novel shipboard Active Phased Array Antenna(APAA) system for maritime mobile satellite communications is introduced. The antenna uses novel technologies like wide range hybrid tracking, single antenna elements with both of Rx and Tx, asymmetrical array structure, interference isolation between Rx and Tx, and error correction method from frequency scan effect. The antenna has single aperture for both of Rx and Tx with 32 $\times$ 4 two-dimensional array. The antenna has two beams. Its frequencies are 7.25 ~ 7.75 GHz for Rx and 7.9 ~ 8.4 GHz for Tx. The antenna gains are 35.4 dBi for Rx and 35.7 dBi for Tx, those are 54 % of efficiency. The electrically steering ranges are $\pm$35$^{\circ}$ of elevation direction and $\pm$4$^{\circ}$ of azimuth direction. The mechanical control ranges at hybrid tracking capability are continuous 360$^{\circ}$ of azimuth direction and $\pm$10$^{\circ}$ of elevation direction. The antenna has 2.2$^{\circ}$ of 3 dB beamwidth, -14 dB of sidelobe level, and 21 dB of cross-pol suppression. The antenna performance was measured by near field measurement set. Its system performance was tested on the ship motion simulator and with the satellite transponder simulator. The test result showed that its tracking error was within -3 dB from its peak gain under motion condition. The antenna system was tested by real modulated Direct Broadcasting Satellite(DBS) signals to check its communication processing function.

Characteristics and Prediction of Total Ozone and UV-B Irradiance in East Asia Including the Korean Peninsula (한반도를 포함한 동아시아 영역에서 오존전량과 유해자외선의 특성과 예측)

  • Moon, Yun-Seob;Seok, Min-Woo;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.15 no.8
    • /
    • pp.701-718
    • /
    • 2006
  • The average ratio of the daily UV-B to total solar (75) irradiance at Busan (35.23$^{\circ}$N, 129.07$^{\circ}$E) in Korea is found as 0.11%. There is also a high exponential relationship between hourly UV-B and total solar irradiance: UV-B=exp (a$\times$(75-b))(R$^2$=0.93). The daily variation of total ozone is compared with the UV-B irradiance at Pohang (36.03$^{\circ}$N, 129.40$^{\circ}$E) in Korea using the Total Ozone Mapping Spectrometer (TOMS) data during the period of May to July in 2005. The total ozone (TO) has been maintained to a decreasing trend since 1979, which leading to a negative correlation with the ground-level UV-B irradiance doting the given period of cloudless day: UV-B=239.23-0.056 TO (R$^2$=0.52). The statistical predictions of daily total ozone are analyzed by using the data of the Brewer spectrophotometer and TOMS in East Asia including the Korean peninsula. The long-term monthly averages of total ozone using the multiplicative seasonal AutoRegressive Integrated Moving Average (ARIMA) model are used to predict the hourly mean UV-B irradiance by interpolating the daily mean total ozone far the predicting period. We also can predict the next day's total ozone by using regression models based on the present day's total ozone by TOMS and the next day's predicted maximum air temperature by the Meteorological Mesoscale Model 5 (MM5). These predicted and observed total ozone amounts are used to input data of the parameterization model (PM) of hourly UV-B irradiance. The PM of UV-B irradiance is based on the main parameters such as cloudiness, solar zenith angle, total ozone, opacity of aerosols, altitude, and surface albedo. The input data for the model requires daily total ozone, hourly amount and type of cloud, visibility and air pressure. To simplify cloud effects in the model, the constant cloud transmittance are used. For example, the correlation coefficient of the PM using these cloud transmissivities is shown high in more than 0.91 for cloudy days in Busan, and the relative mean bias error (RMBE) and the relative root mean square error (RRMSE) are less than 21% and 27%, respectively. In this study, the daily variations of calculated and predicted UV-B irradiance are presented in high correlation coefficients of more than 0.86 at each monitoring site of the Korean peninsula as well as East Asia. The RMBE is within 10% of the mean measured hourly irradiance, and the RRMSE is within 15% for hourly irradiance, respectively. Although errors are present in cloud amounts and total ozone, the results are still acceptable.

Estimation on Parameters of Water Quality in the Saemanguem Lake by WASP5 Model (WASP5 모형에 의한 새만금호의 수질 매개변수 추정)

  • Park, Young-Ki;Choi, Moon-Sul;Lee, Jang-Choon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.743-754
    • /
    • 2000
  • Model parameters of the WASP5 applied to Saemanguem lake were estimated. The methodology is based on grouping water quality constituents and relevant parameters and successively estimating each group of parameters by a trial-and-error procedure. Chlorophyll-a, nitrogen cycles, phosphorus cycles, BOD and DO were simulated at the complexity level 4. The Saemangeum basin divided into a number of unit sub-watershed. And a water budget model analysis with 22 years from 1975 to 1996 year was examined. In this paper, input data at upstream boundaries of model was made to determine seasonally-averaged flow rate through water budget analysis. Calibration and verification of the model were used seasonal average of water quality measurements in 1997 and 1998 years. Grouping water quality constituents and associated parameters proved to be efficient in estimating a number of model parameters. From the results of model calibration and verification, it was found that quantitative evaluations of nonpoint source for organic matters are essential.

  • PDF