• Title/Summary/Keyword: Error function

Search Result 3,401, Processing Time 0.031 seconds

Soft Error Adaptable Deep Neural Networks

  • Ali, Muhammad Salman;Bae, Sung-Ho
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.241-243
    • /
    • 2020
  • The high computational complexity of deep learning algorithms has led to the development of specialized hardware architectures. However, soft errors (bit flip) may occur in these hardware systems due to voltage variation and high energy particles. Many error correction methods have been proposed to counter this problem. In this work, we analyze an error correction mechanism based on repetition codes and an activation function. We test this method by injecting errors into weight filters and define an ideal error rate range in which the proposed method complements the accuracy of the model in the presence of error.

  • PDF

Analysis of Proportional Control for Grid Connected Inverter With LCL Filter

  • Windarko, Novie Ayub;Lee, Jin-Mok;Choi, Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.247-249
    • /
    • 2008
  • There are many types of grid-connected inverter controllers; Synchronous Reference Frame (SRF)-based controller is the most popular methods. SRF-based controller is capable for reducing both of zero-steady state error and phase delay. However, SRF-based controller has a complex algorithm to apply in real application such as digital processor. Resonant controller is also reduced zero-steady state error, but its transfer function has a high order. In this paper, a simple proportional control is applied for grid connected inverter with LCL filter. LCL filter is a third order system. Applying a simple proportional controller is not increased the order of closed loop transfer function. By this technique, the single phase model is easily obtained. To reduce steady state error, proportional gain is set as high as possible, but it may produce instability. To compromise between a minimum steady state error and stability, the single phase model is evaluate through Root Locus and Bode diagram. PSIM simulation is used to verify the analysis.

  • PDF

ANN Synthesis Models Trained with Modified GA-LM Algorithm for ACPWs with Conductor Backing and Substrate Overlaying

  • Wang, Zhongbao;Fang, Shaojun;Fu, Shiqiang
    • ETRI Journal
    • /
    • v.34 no.5
    • /
    • pp.696-705
    • /
    • 2012
  • Accurate synthesis models based on artificial neural networks (ANNs) are proposed to directly obtain the physical dimensions of an asymmetric coplanar waveguide with conductor backing and substrate overlaying (ACPWCBSO). First, the ACPWCBSO is analyzed with the conformal mapping technique (CMT) to obtain the training data. Then, a modified genetic-algorithm-Levenberg-Marquardt (GA-LM) algorithm is adopted to train ANNs. In the algorithm, the maximal relative error (MRE) is used as the fitness function of the chromosomes to guarantee that the MRE is small, while the mean square error is used as the error function in LM training to ensure that the average relative error is small. The MRE of ANNs trained with the modified GA-LM algorithm is less than 8.1%, which is smaller than those trained with the existing GA-LM algorithm and the LM algorithm (greater than 15%). Lastly, the ANN synthesis models are validated by the CMT analysis, electromagnetic simulation, and measurements.

Determination of cable force based on the corrected numerical solution of cable vibration frequency equations

  • Dan, Danhui;Chen, Yanyang;Yan, Xingfei
    • Structural Engineering and Mechanics
    • /
    • v.50 no.1
    • /
    • pp.37-52
    • /
    • 2014
  • The accurate determination of cable tension is important to the monitoring of the condition of a cable-stayed bridge. When applying a vibration-based formula to identify the tension of a real cable under sag, stiffness and boundary conditions, the resulting error must not be overlooked. In this work, by resolving the implicit frequency function of a real cable under the above conditions numerically, indirect methods of determining the cable force and a method to calculate the corresponding cable mode frequency are investigated. The error in the tension is studied by numerical simulation, and an empirical error correction formula is presented by fitting the relationship between the cable force error and cable parameters ${\lambda}^2$ and ${\xi}$. A case study on two real cables of the Shanghai Changjiang Bridge shows that employing the method proposed in this paper can increase the accuracy of the determined cable force and reduce the computing time relative to the time required for the finite element model.

The Realization of State-Space Digital Filters with Minimum Output Error Variance by Weighted Function (가중함수에 의한 최소 출력오차 분산을 갖는 상태공간 디지틀 필터 실현)

  • 김정화;정찬수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.9
    • /
    • pp.909-917
    • /
    • 1992
  • This paper proposes the realization of state-space digital filters with minimum output error variance. The algorithm is transforms of controllability and observability gramian in linear time invariant systems by weighted function and can improve performance of the digital filters by reducing the put error variance for state space coeffient variation. A numerical example shows that algorithm structure has much lower output error variance than that of other four structures(canonical, parallel, statistical sensitivity, balanced).

  • PDF

A Modified Mesh Generation Algorithm Using Pollution Error (Pollution error를 이용한 개선된 요소생성 알고리즘)

  • 유형선;장준환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.34-42
    • /
    • 2001
  • In this paper, we study on a modified mesh generation method based on the pollution error estimate. This method is designed for the control of the pollution error in any patch of elements of interest. It is a well-known fact that the pollution error estimates are much more than the local one. Reliable a posteriori error estimation is possible by controlling the pollution error in the patch through proper design of the mesh outside the patch. This design is possible by equally distributing the pollution error indicators over the mesh outside the patch. The conventional feedback pollution-adaptive mesh generation algorithm needs many iterations. Therefore, the solution time is significant. But we use the remeshing scheme in the proposed method. We will also show that the pollution error reduces less than the local error.

  • PDF

Design of an Error Model for Performance Enhancement of MEMS IMU-Based GPS/INS Integrated Navigation Systems

  • Koo, Moonsuk;Oh, Sang Heon;Hwang, Dong-Hwan
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.51-57
    • /
    • 2012
  • In this paper, design of an error model is presented in which the bias characteristic of the MEMS IMU is taken into consideration for performance enhancement of the MEMS IMU-based GPS/INS integrated navigation system. The drift bias of the MEMS IMU is modeled as a 1st-order Gauss-Markov (GM) process, and the autocorrelation function is obtained from the collected IMU data, and the correlation time is estimated from this. Prior to obtaining the autocorrelation function, the noise of IMU data is eliminated based on wavelet. As a result of simulation, it is represented that the parameters of error model can be estimated correctly only when a proper denoising is performed according to dynamic behavior of drift bias, and that the integrated navigation system based on error model, in which the drift bias is considered, provides more correct navigation performance compared to the integrated navigation system based on error model in which the drift bias is not considered.

Measurement Error Variance Estimation Based on Subsample Re-measurements (이중 추출 자료를 이용한 측정오차분산의 추정)

  • 허순영
    • Proceedings of the Korean Association for Survey Research Conference
    • /
    • 2003.06a
    • /
    • pp.34-41
    • /
    • 2003
  • In many cases, the measurement error variances may be functions of the unknown true values or related covariates. This paper develops estimators of the parameters of a linear measurement error variance function based on wi thin-unit sample variaoces. This paper devotes to: (1) define measurement error scale factor $\delta$: (2) develop estimators of the parameters of the 1inear measurement error variance function under stratified multistage sampling design and small error conditions; (3) use propensity methods to adjust survey weights to account for possible selection effects at the replicate level. The proposed methods are applied to medical examination data from the U S Third National Health and Nutrition Examination Survey(NHANES III)

  • PDF

Compensation of Geometric Error by the Correction of Control Surface (제어곡면 수정에 의한 기하오차 보정)

  • Ko, Tae-Jo;Park, Sang-Shin;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.97-103
    • /
    • 2001
  • Accuracy of a machined part is determined by the relative motion between the cutting tool and the workpiece. One of the important factors which affects the relative motion is the geometric errors of a machine tool. In this study, firstly, geometric errors are measured by laser interferometer, and the positioning error of each control point selected uniformly on the control surface CAD model can be estimated from th oirm shaping model and geometric error data base. Where a form shaping function is derived from the link of homogeneous transformation matrix. Secondly, control points are shifted to the estimated amount of positioning errors. A new control surface is modeled with NURBS(Non Uniform Rational B-Spline) surface approximation to the shifted control points. By generating tool paths to the redesigned control surface, we reduce the machining error quite.

  • PDF

Motion Error Analysis of an Porous Air Bearing Table (다공질 공기베어링 테이블의 운동오차 해석)

  • Park, Cheon-Hong;Lee, Hu-Sang
    • 연구논문집
    • /
    • s.34
    • /
    • pp.101-112
    • /
    • 2004
  • In order to analyze the motion errors of the aerostatic stage, it is necessary to consider the influence of the moment variation occurredinside the pads. In this paper, a motion error anaysis method utilizing the transfer functions on the reaction force and moment is proposed, and general characteristics of the transfer functions are discussed. Calculated motion errors by the proposed method show good agreement with the ones calculated by Multi Pad Method, which is considered the entire table as an analysis object. Also, by the introduction of the transfer function of motion errors, which represent the relationship between the spatial frequency components of the rail form error and motion errors, motional characteristics of the porous aerostatic stage can be generalized. In detail, the influence of the spatial frequencies is analyzed quantatively, and the patterns of the insensitive frequencies which almost do not affect the linear motion error or angular motion error according to the rail length ratio and the number of the pad are verified. The relationship between the moment variation occurred inside the pads and the motion errors is also verified together.

  • PDF