• Title/Summary/Keyword: Error covariance

Search Result 272, Processing Time 0.019 seconds

Application of Machine Learning Algorithm and Remote-sensed Data to Estimate Forest Gross Primary Production at Multi-sites Level (산림 총일차생산량 예측의 공간적 확장을 위한 인공위성 자료와 기계학습 알고리즘의 활용)

  • Lee, Bora;Kim, Eunsook;Lim, Jong-Hwan;Kang, Minseok;Kim, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1117-1132
    • /
    • 2019
  • Forest covers 30% of the Earth's land area and plays an important role in global carbon flux through its ability to store much greater amounts of carbon than other terrestrial ecosystems. The Gross Primary Production (GPP) represents the productivity of forest ecosystems according to climate change and its effect on the phenology, health, and carbon cycle. In this study, we estimated the daily GPP for a forest ecosystem using remote-sensed data from Moderate Resolution Imaging Spectroradiometer (MODIS) and machine learning algorithms Support Vector Machine (SVM). MODIS products were employed to train the SVM model from 75% to 80% data of the total study period and validated using eddy covariance measurement (EC) data at the six flux tower sites. We also compare the GPP derived from EC and MODIS (MYD17). The MODIS products made use of two data sets: one for Processed MODIS that included calculated by combined products (e.g., Vapor Pressure Deficit), another one for Unprocessed MODIS that used MODIS products without any combined calculation. Statistical analyses, including Pearson correlation coefficient (R), mean squared error (MSE), and root mean square error (RMSE) were used to evaluate the outcomes of the model. In general, the SVM model trained by the Unprocessed MODIS (R = 0.77 - 0.94, p < 0.001) derived from the multi-sites outperformed those trained at a single-site (R = 0.75 - 0.95, p < 0.001). These results show better performance trained by the data including various events and suggest the possibility of using remote-sensed data without complex processes to estimate GPP such as non-stationary ecological processes.

The Relationship between Internet Search Volumes and Stock Price Changes: An Empirical Study on KOSDAQ Market (개별 기업에 대한 인터넷 검색량과 주가변동성의 관계: 국내 코스닥시장에서의 산업별 실증분석)

  • Jeon, Saemi;Chung, Yeojin;Lee, Dongyoup
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.81-96
    • /
    • 2016
  • As the internet has become widespread and easy to access everywhere, it is common for people to search information via online search engines such as Google and Naver in everyday life. Recent studies have used online search volume of specific keyword as a measure of the internet users' attention in order to predict disease outbreaks such as flu and cancer, an unemployment rate, and an index of a nation's economic condition, and etc. For stock traders, web search is also one of major information resources to obtain data about individual stock items. Therefore, search volume of a stock item can reflect the amount of investors' attention on it. The investor attention has been regarded as a crucial factor influencing on stock price but it has been measured by indirect proxies such as market capitalization, trading volume, advertising expense, and etc. It has been theoretically and empirically proved that an increase of investors' attention on a stock item brings temporary increase of the stock price and the price recovers in the long run. Recent development of internet environment enables to measure the investor attention directly by the internet search volume of individual stock item, which has been used to show the attention-induced price pressure. Previous studies focus mainly on Dow Jones and NASDAQ market in the United States. In this paper, we investigate the relationship between the individual investors' attention measured by the internet search volumes and stock price changes of individual stock items in the KOSDAQ market in Korea, where the proportion of the trades by individual investors are about 90% of the total. In addition, we examine the difference between industries in the influence of investors' attention on stock return. The internet search volume of stocks were gathered from "Naver Trend" service weekly between January 2007 and June 2015. The regression model with the error term with AR(1) covariance structure is used to analyze the data since the weekly prices in a stock item are systematically correlated. The market capitalization, trading volume, the increment of trading volume, and the month in which each trade occurs are included in the model as control variables. The fitted model shows that an abnormal increase of search volume of a stock item has a positive influence on the stock return and the amount of the influence varies among the industry. The stock items in IT software, construction, and distribution industries have shown to be more influenced by the abnormally large internet search volume than the average across the industries. On the other hand, the stock items in IT hardware, manufacturing, entertainment, finance, and communication industries are less influenced by the abnormal search volume than the average. In order to verify price pressure caused by investors' attention in KOSDAQ, the stock return of the current week is modelled using the abnormal search volume observed one to four weeks ahead. On average, the abnormally large increment of the search volume increased the stock return of the current week and one week later, and it decreased the stock return in two and three weeks later. There is no significant relationship with the stock return after 4 weeks. This relationship differs among the industries. An abnormal search volume brings particularly severe price reversal on the stocks in the IT software industry, which are often to be targets of irrational investments by individual investors. An abnormal search volume caused less severe price reversal on the stocks in the manufacturing and IT hardware industries than on average across the industries. The price reversal was not observed in the communication, finance, entertainment, and transportation industries, which are known to be influenced largely by macro-economic factors such as oil price and currency exchange rate. The result of this study can be utilized to construct an intelligent trading system based on the big data gathered from web search engines, social network services, and internet communities. Particularly, the difference of price reversal effect between industries may provide useful information to make a portfolio and build an investment strategy.