• Title/Summary/Keyword: Error Sources

Search Result 612, Processing Time 0.041 seconds

A Study on the Calibration Techniques for Thermopile Pyranometer (일사계 교정기법에 관한 연구)

  • Jo, Dok-Ki;Kang, Yong-Heack
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.161-166
    • /
    • 2008
  • The major purpose of this paper is to develop an uncertainty estimate for the calibration of thermopile instruments used to measure solar radiation parameters. We briefly describe the solar radiation parameters most often measured, instrumentation, reference standards, and calibration techniques. The bulk of the paper describes elemental sources of error and their magnitude. We then apply a standard error analysis methodology to combine these elemental error estimates into a statement of total uncertainty for the instrument calibration factor. Our results allow one to evaluate the accuracy of a radiometric measurement using thermopile instrumentation in the light of the application, such as engineering test evaluation or for validation of theoretical models.

  • PDF

실시간 전자거리인식을 위한 3차원거리계측 알고리즘

  • Kim, Jong-Man;Sin, Dong-Yong;Lee, Hye-Jeong;Kim, Hyeong-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.5-5
    • /
    • 2010
  • The depth of the object pointed by the laser beam is computed depending on the pixel position on the CCD There involved several number of internal and external parameters such as inter-pixel distance, focal length, position and orientation of the system components in the depth measurement error. In this paper, it is shown through the error sensitivity analysis of the parameters that the most important parameters in the sense of error sources are the angle of the laser beam and the inter pixel distance. Also, the calibration technique to minimize their effect for the depth computation is proposed.

  • PDF

Signal Processing Method for Noise Reduction of Multi-Axis Force Sensors (다축힘센서의 노이즈신호 개선을 위한 신호처리 방법)

  • 김용찬;강철구;남현도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1026-1029
    • /
    • 2003
  • There are always some errors in force sensing of multi-axis force sensors that aggravate sensor performance. Error sources may be classified mainly in two groups. One is structural error due to inaccuracy of sensor body, and the other is error due to noise signals existing in the sensed information. This paper presents a brief review about the principle of multi-axis force sensors, and then a method that can reduce the effect of noise signals. The method is to read digital signals in computer instead of analog voltage signals. We can eliminate the bad effect of electromagnetic waves emitted from computer and of 60 Hz noise emitted from AC source by the proposed method. The proposed method is investigated through experimental demonstration. The experimental results show the proposed method improves the sensor performance significantly.

  • PDF

Influence of Inclined Holes in Measurement of Residual Stress by the Hole Drilling Method

  • Kim, Cheol;Yang, Won-Ho;Heo, Sung-Pil
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1647-1654
    • /
    • 2001
  • The hole drilling method is widely used in measuring residual stress in surfaces. In this method, the inclination of holes is one of the sources of error. This paper presents a finite element analysis of the influence of inclined holes on the uniaxial residual stress field. The error in stress has been found to increase proportionally to the correct inclined angle of the hole. The correction equations by which one may easily obtain the residual stress, taking account of the inclined angle and direction, have been derived. The error of stress due to the inclined hole has been reduced to around 1% using the correction equations.

  • PDF

Error Analysis: What Problems do Learners Face in the Production of the English Passive Voice?

  • Jung, Woo-Hyun
    • English Language & Literature Teaching
    • /
    • v.12 no.2
    • /
    • pp.19-40
    • /
    • 2006
  • This paper deals with a part-specific analysis of grammatical errors in the production of the English passive in writing. The purpose of the study is dual: to explore common error types in forming the passive; and to provide plausible sources of the errors, with special attention to the role of the native language. To this end, this study obtained a large amount of data from Korean EFL university students using an essay writing task. The results show that in forming the passive sentence, errors were made in various ways and that the most common problem was the formation of the be-auxiliary, in particular, the proper use of tense and S-V agreement. Another important finding was that the global errors found in this study were not necessarily those with the greatest frequency. Also corroborated was the general claim that many factors work together to account for errors. In many cases, interlingual and intralingual factors were shown to interact with each other to explain the passive errors made by Korean students. On the basis of the results, suggestions are made for effective and well-formed use of the passive sentence.

  • PDF

The Sound Field Reconstruction of a Korean Bell Using an Error Minimization Scheme in the BEM-Based Acoustical Holography (경계요소법에 기초한 음향 홀로그래피에서 오차 최소화 과정에 의한 한국 종의 음장 재구성)

  • 김철희;이장무;강연준
    • Journal of KSNVE
    • /
    • v.9 no.1
    • /
    • pp.131-140
    • /
    • 1999
  • A method to reconstruct the sound field around a Korean bell is developed. The sound radiation problem is formulated based on the boundary element method by using the algorithm of the acoustical holography. Sound pressures at the hologram surface are measured and used as input data for the analysis program that was developed in this study. An error minimization scheme is presented to overcome difficulties that arise in the backward reconstruction of the BEM-based acoustical holography In the model fictitious source surfaces were also introduced to reduce the complexity stemmed from the source shape. The sound field associated with the (4.0) vibrational mode of the Korean bell was visualized and verified experimentally.

  • PDF

Analysis and Improvement of Low-Frequency Control of Speed-Sensorless AC Drive Fed by Three-Level Inverter

  • Chang Jie (Jay)
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.358-365
    • /
    • 2005
  • In induction machine drive without a speed sensor, the estimation of the motor flux and speed often becomes deteriorated at low speeds with low back EMF. Our analysis shows that, in addition to the state resistance variation, the estimated value of field orientation angle is often corrupted by accumulative errors from the integration of voltage variables at motor terminals that have low signal/noise ratio at low frequencies. A repetitive loop path of integration in the feedback can amplify this type of error, thus speeding up the degradation process. The control system runs into information starvation due to the loss of correct field orientation. The machine's spiral vectors are controlled only in a reduced dimension in this situation. A novel control scheme is developed to improve the control performance of motor's current, torque and speed at low frequencies. The scheme gains a full-dimensional vector control and is less sensitive to the combined effect of the error sources at the low frequencies. Experimental tests demonstrate promising performances are achievable even below 0.5 Hz.

HRTF-field Reproduction for Robust Virtual Source Imaging (머리 전달 함수장 재현을 통한 광대역 입체 음향 구현)

  • Choi, Joung-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.199-207
    • /
    • 2008
  • A hybrid technique that combines the advantages of binaural reproduction and sound field reproduction technique is proposed. The concept of HRTF-field, which is defined as the set of HRTFs corresponding to the various head dislocations, enables us to realize virtual source imaging over a wide area. Conventional binaural($2{\times}2$) reproduction system is redefined as a MIMO system composed of multiple control sources and multiple head locations, and HRTF variations corresponding to various head movement are quantified. Through the direct control of HRTF-field, reproduction error induced by head dislocation can be minimized in least-square-error sense, and consequential disturbances on the virtual source image can be reduced within a selected area. Simple lateralization examples are investigated, and the reproduction error of the proposed technique is compared to that of higher-order Ambisonics.

The Identification of Vibration Sources in Optical Disk Drive Using PCF Method (PCF 기법을 이용한 광디스크 드라이브의 진동원 규명)

  • 함경훈;장영배;박노철;박영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.127-133
    • /
    • 2002
  • After the vibration source is searched in optical disk drive as an information storage device broadly used the influence of it against FES(Focusing Error Signal) which is a kind of positioning error of pick up from the circuit is carefully examined. For that Purpose, partial coherence function method is applied on a simple multi-degree of freedom model made for the theoretical verification and it is practically introduced in optical disk drive for analyzing the effect of vibration source. Finally, partial coherence output spectrum is attentively observed in order to know which vibration source is a great influence on FES.

  • PDF

A Study on the Uncertainty Analysis for Thermopile Pyranometer Calibrations (일사계 교정을 위한 불확실성 분석에 관한 연구)

  • Jo, D.K.;Chun, I.S.;Jeon, M.S.;Kang, Y.H.;Auh, C.M.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.3
    • /
    • pp.25-32
    • /
    • 2001
  • The major purpose of this paper is to develop an uncertainty estimate for the calibration of thermopile instruments used to measure solar radiation parameters. We briefly describe the solar radiation parameters most often measured, instrumentation, reference standards, and calibration techniques. The bulk of the paper describes elemental sources of error and their magnitude. We then apply a standard error analysis methodology to combine these elemental error estimates into a statement of total uncertainty for the instrument calibration factor. Our results allow one to evaluate the accuracy of a radiometric measurement using thermopile instrumentation in the light of the application, such as engineering test evaluation or for validation of theoretical models.

  • PDF