• Title/Summary/Keyword: Error Reduction

Search Result 1,416, Processing Time 0.029 seconds

CNN deep learning based estimation of damage locations of a PSC bridge using static strain data (정적 변형률 데이터를 사용한 CNN 딥러닝 기반 PSC 교량 손상위치 추정)

  • Han, Man-Seok;Shin, Soo-Bong;An, Hyo-Joon
    • Journal of KIBIM
    • /
    • v.10 no.2
    • /
    • pp.21-28
    • /
    • 2020
  • As the number of aging bridges increases, more studies are being conducted on developing effective and reliable methods for the assessment and maintenance of bridges. With the advancement in new sensing systems and data learning techniques through AI technology, there is growing interests in how to evaluate bridges using these advanced techniques. This paper presents a CNN(Convolution Neural Network) deep learning based technique for evaluating the damage existence and for estimating the damage location in PSC bridges using static strain data. Simulation studies were conducted to investigate the proposed method with error analysis. Damage was simulated as the reduction in the stiffness of a finite element. A data learning model was constructed by applying the CNN technique as a type of deep learning. The damage status and its location were estimated using data set built through simulation. It was assumed that the strain gauges were installed in a regular interval under the PSC bridge girders. In order to increase the accuracy in evaluating damage, the squared error between the intact and measured strains are computed and applied for training the data model. Considering the damage occurring near the supports, the results of error analysis were compared according to whether strain data near the supports were included.

The Performance Improvement of CMA Adaptive Equalization in 16-QAM Signal using the Coordinate Reduction (Coordinate Reduction을 이용한 16-QAM 신호의 CMA 적응 등화 성능 개선)

  • Lim, Seung-Gag;Jeong, Young-Hwa
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.107-113
    • /
    • 2011
  • This paper is concerned with the CR-CMA (Coordinate Reduction-Constant Modulus Algorithm) adaptive equalization algorithm using the coordinate reduction in order to improve the convergence characteristic and residual intersymbol interference which are used as the performance index for an adaptive equalizer. The equalizer is used to reduce the distortion caused by the intersymbol interference on the wireless and the wired band-limited channel that connect the transmitting system and receiving system. The CMA is widely known as the representative algorithm for equalization. In order to transmitting the mass information with a high speed through the channels, a fast convergence speed in the equalizer performance that is able to minimize overhead needed for equalization is acquired. In this paper, we introduce the new cost function to reduce the constellation of received signal at the input stage of a equalizer. It reduce the error at the steady equalization state. By the computer simulation, we confirmed that the proposed CR-CMA algorithm has the faster convergence speed and the smaller residual intersymbole interference than the conventional CMA.

A Resource Reduction Scheme with Low Migration Frequency for Virtual Machines on a Cloud Cluster

  • Kim, Changhyeon;Lee, Wonjoo;Jeon, Changho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.6
    • /
    • pp.1398-1417
    • /
    • 2013
  • A method is proposed to reduce excess resources from a virtual machine(VM) while avoiding subsequent migrations for a computer cluster that provides cloud service. The proposed scheme cuts down on the resources of a VM based on the probability that migration may occur after a reduction. First, it finds a VM that can be scaled down by analyzing the history of the resource usage. Then, the migration probability is calculated as a function of the VM resource usage trend and the trend error. Finally, the amount of resources needed to eliminate from an underutilized VM is determined such that the migration probability after the resource reduction is less than or equal to an acceptable migration probability. The acceptable migration probability, to be set by the cloud service provider, is a criterion to assign a weight to the resource reduction either to prevent VM migrations or to enhance VM utilization. The results of simulation show that the proposed scheme lowers migration frequency by 31.6~60.8% depending on the consistency of resource demand while losing VM utilization by 9.1~21.5% compared to other known approaches, such as the static and the prediction-based methods. It is also verified that the proposed scheme extends the elapsed time before the first occurrence of migration after resource reduction 1.1~2.3-fold. In addition, changes in migration frequency and VM utilization are analyzed with varying acceptable migration probabilities and the consistency of resource demand patterns. It is expected that the analysis results can help service providers choose a right value of the acceptable migration probability under various environments having different migration costs and operational costs.

Excessive State of Pollutant Load Allocation and Penalty Application Schemes based on Pollutant Reduction Plan Types for Solving Excessive Problem of Allocation (오염할당부하량의 초과현황 및 초과해소를 위한 삭감계획 유형에 따른 페널티 적용방안)

  • Park, Jae Hong;Park, Bae Kyoung;Oh, Seung Young;Hwang, Ha Sun;Lee, Jae Kwan
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.66-73
    • /
    • 2013
  • Total Maximum Daily Loads (TMDLs) system was introduced to manage pollution load of watershed and to improve water quality of unit watershed so that it is possible to protect dringking water soureces. Load allocation observation is the most important factor in TMDLs system. Because if load allocation is not observed, it is difficult to achieve water quality goal of unit watershed. Also it is impossible to improve water quality of the drinking water sources. Therefore it is necessary to apply some kind of sanctions (penalty) in case of excess of load allocation. The sanctions have to be, however, applied differently based on various reduction plan types, i.e., using the reduction load planed in 2nd phase, delay the completion, additional reduction in 2nd phase, error of the pollution sources, etc. Moreover, the penalty load should be properly imposed, lest it should be overburden the provence. The reduction load trade inter province must be restrictively permmitted only the same unit watershed.

Efficient Link Adaptation Scheme using Precoding for LTE-Advanced Uplink MIMO (LTE-Advanced에서 프리코딩에 의한 효율적인 상향링크 적응 방식)

  • Park, Ok-Sun;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2B
    • /
    • pp.159-167
    • /
    • 2011
  • LTE-Advanced system requires uplink multi-antenna transmission in order to achieve the peak spectral efficiency of 15bps/Hz. In this paper, the uplink MIMO system model for the LTE-Advanced is proposed and an efficient link adaptation shceme using precoding is considered providing error rate reduction and system capacity enhancement. In particular, the proposed scheme determines a transmission rank by selecting the optimal wideband precoding matrix, which is based on the derived signal-to-interference and noise ratio (SINR) for the minimum mean squared error (MMSE) receivers of $2{\times}4$ multiple input multiple output (MIMO). The proposed scheme is verified by simulation with a practical MIMO channel model. The simulation results of average block-error-rate(BLER) reflect that the gain due to the proposed rank adapted transmission over full-rank transmission is evident particularly in the case of lower modulation and coding scheme (MCS) and high mobility, which means the severe channel fading environment.

A Study on Minimization Method of Reading Error Range and Implementation of Postal 4-state Bar Code Reader with Raster Beam (Raster Beam에 의한 우편용 4-state 바코드 판독기 구현 및 판독오차 범위의 최소화 방법에 관한 연구)

  • Park, Moon-Sung;Song, Jae-Gwan;Nam, Yun-Seok;Kim, Hye-Kyu;Jung, Hoe-Kyung
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.7
    • /
    • pp.2149-2160
    • /
    • 2000
  • Recently many efforts on the development of automatic processing system for delivery sequence sorting have been performed in ETRI, which requires the use of postal4-state bar code system to encode delivery points. The 4-state bar code called postal 4-state barcode for high speed processing that has been specifically designed for information processing of logistics and automatic processing of he mail items. The Information of 4-state bar code indicates mail data such as post code, delivery sequence number, error correction code worked, customer information, and a unique ID. This appear addresses the issue on he reduction of reading error in postal 4-state raster beam based bar code reader. The raster beam scanning features are the unequally distributed number of spots per each unit, which cause reading errors. We propose a method for reducing the bar code reading error by adjusting measured values of bar code width to its average value over each interval. The test results show that the above method reduces the average reading error rate approximately by 99.88%.

  • PDF

Performance Analysis and Evaluation of Hybrid Compensation Algorithm for Localization (하이브리드형 위치인식 보정 알고리즘 성능 분석 및 평가)

  • Kwon, Seong-Ki;Lee, Dong-Myung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.2263-2268
    • /
    • 2010
  • In this paper, the hybrid compensation algorithm($A_{HB}$) for localization using the Compensation Algorithm distance($CA_d$) and the Algorithm of Equivalent Distance Rate(AEDR) in SDS-TWR(Symmetric Double-Sided Two-Way Ranging) is suggested and the performance of the proposed algorithm is analyzed by practical experimentations. From experimentations, it is confirmed that the errors are reduced in 28 coordinates of total 32 coordinates in the experimental region and the errors are reduced about above 70% in the assigned 3 type error level ranges by $A_{HB}$. Also, it is analyzed that the average localization error is reduced from 2.67m to 1.19m as 55.4% in total 32 coordinates by $A_{HB}$ and the error compensation capability of $A_{HB}$ is very excellent as above 90%. From above results, we have seen that the error reduction ratio and error compensation capability of $A_{HB}$ is more excellent than each $CA_d$ or AEDR.

Design of Space-Time Trellis Code with Uniform Error Property (균일 오율의 시공간 격자상 부호 설계)

  • Jung Young-Seok;Lee Jae-Hong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.8 s.350
    • /
    • pp.59-68
    • /
    • 2006
  • The study on the uniform error property of codes has been restricted to additive white Gaussian noise (AWGN) channel, which is generally referred to as geometrical uniformity. In this paper, we extend the uniform error property to space-time codes in multiple-input multiple-output (MIMO) channel by directly treating the probability density functions fully describing the transmission channel and the receiver. Moreover, we provide the code construction procedure for the geometrically uniform space-time trellis codes in fast MIMO channels, which consider the distance spectrum. Due to the uniform error property, the complexity of code search is extensively reduced. Such reduction makes it possible to obtain the optimal space-time trellis codes with high order states. Simulation results show that new codes offer a better performance in fast MIMO channels than other known codes.

Adaptive Error Concealment Method Using Affine Transform in the Video Decoder (비디오 복호기에서의 어파인 변환을 이용한 적응적 에러은닉 기법)

  • Kim, Dong-Hyung;Kim, Seung-Jong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9C
    • /
    • pp.712-719
    • /
    • 2008
  • Temporal error concealment indicates the algorithm that restores the lost video data using temporal correlation between previous frame and current frame with lost data. It can be categorized into the methods of block-based and pixel-based concealment. The proposed method in this paper is for pixel-based temporal error concealment using affine transform. It outperforms especially when the object or background in lost block has geometric transform which can be modeled using affine transform, that is, rotation, magnification, reduction, etc. Furthermore, in order to maintain good performance even though one or more motion vector represents the motion of different objects, we defines a cost function. According to cost from the cost function, the proposed method adopts affine error concealment adaptively. Simulation results show that the proposed method yields better performance up to 1.9 dB than the method embedded in reference software of H.264/AVC.

Reduction of Relative Position Error for DGPS Based Localization of AUV using LSM and Kalman Filter (최소자승법과 Kalman Filter를 이용한 AUV 의 DGPS 기반 Localization 의 위치 오차 감소)

  • Eom, Hyeon-Seob;Kim, Ji-Yen;Baek, Jun-Young;Lee, Min-Cheol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.52-60
    • /
    • 2010
  • It is generally important to get a precise position information for autonomous unmanned vehicle(AUV) to run safely. For getting the position of AUV, the GPS has been using to navigation in a vehicle. Though it is useful to finding a position, it is difficult to precisely control a trajectory of the AUV due to large measuring error which may reach over 10 meters. Therefore to apply AUV it needs to compensate for the error. This paper proposes a method to more precisely localize AUV using three low-cost differential global positioning systems (DGPS). The distance errors between each DGPS are minimized as using the least square method (LSM) and the Kalman filter to eliminate a Gaussian white noise. The selected DGPS is cheaper and easier to set up than the RTK-GPS. It is also more precise than the general GPS. The proposed method can compensate the relatively position error according to stationary and moving distance of the AUV. For evaluating the algorithm by simulation, the DGPS signal with the Gaussian white noise to any points is generated by the AR model and compared with the measurement signal. It is confirmed that the proposed method can effectively compensate the position error as comparing with the measurement signal. The compensated position signal can be used to localize and control the AUV in the road.