• 제목/요약/키워드: Error Propagation Model

검색결과 305건 처리시간 0.023초

PSO based neural network to predict torsional strength of FRP strengthened RC beams

  • Narayana, Harish;Janardhan, Prashanth
    • Computers and Concrete
    • /
    • 제28권6호
    • /
    • pp.635-642
    • /
    • 2021
  • In this paper, soft learning techniques are used to predict the ultimate torsional capacity of Reinforced Concrete beams strengthened with Fiber Reinforced Polymer. Soft computing techniques, namely Artificial Neural Network, trained by various back propagation algorithms, and Particle Swarm Optimization (PSO) algorithm, have been used to model and predict the torsional strength of Reinforced Concrete beams strengthened with Fiber Reinforced Polymer. The performance of each model has been evaluated by using statistical parameters such as coefficient of determination (R2), Root Mean Square Error (RMSE), and Mean Absolute Percentage Error (MAPE). The hybrid PSO NN model resulted in an R2 of 0.9292 with an RMSE of 5.35 for training and an R2 of 0.9328 with an RMSE of 4.57 for testing. Another model, ANN BP, produced an R2 of 0.9125 with an RMSE of 6.17 for training and an R2 of 0.8951 with an RMSE of 5.79 for testing. The results of the PSO NN model were in close agreement with the experimental values. Thus, the PSO NN model can be used to predict the ultimate torsional capacity of RC beams strengthened with FRP with greater acceptable accuracy.

다층 신경회로 및 역전달 학습방법에 의한 로보트 팔의 다이나믹 제어 (Dynamic Control of Robot Manipulators Using Multilayer Neural Networks and Error Backpropagation)

  • 오세영;류연식
    • 대한전기학회논문지
    • /
    • 제39권12호
    • /
    • pp.1306-1316
    • /
    • 1990
  • A controller using a multilayer neural network is proposed to the dynamic control of a PUMA 560 robot arm. This controller is developed based on an error back-propagation (BP) neural network. Since the neural network can model an arbitrary nonlinear mapping, it is used as a commanded feedforward torque generator. A Proportional Derivative (PD) feedback controller is used in parallel with the feedforward neural network to train the system. The neural network was trained by the current state of the manipulator as well as the PD feedback error torque. No a priori knowledge on system dynamics is needed and this information is rather implicitly stored in the interconnection weights of the neural network. In another experiment, the neural network was trained with the current, past and future positions only without any use of velocity sensors. Form this thim window of position values, BP network implicitly filters out the velocity and acceleration components for each joint. Computer simulation demonstrates such powerful characteristics of the neurocontroller as adaptation to changing environments, robustness to sensor noise, and continuous performance improvement with self-learning.

  • PDF

Confidence region of identified parameters and optimal sensor locations based on sensitivity analysis

  • Kurita, Tetsushi;Matsui, Kunihito
    • Structural Engineering and Mechanics
    • /
    • 제13권2호
    • /
    • pp.117-134
    • /
    • 2002
  • This paper presents a computational method for a confidence region of identified parameters which are affected by measurement noise and error contained in prescribed parameters. The method is based on sensitivities of the identified parameters with respect to model parameter error and measurement noise along with the law of error propagation. By conducting numerical experiments on simple models, it is confirmed that the confidence region coincides well with the results of numerical experiments. Furthermore, the optimum arrangement of sensor locations is evaluated when uncertainty exists in prescribed parameters, based on the concept that square sum of coefficients of variations of identified results attains minimum. Good agreement of the theoretical results with those of numerical simulation confirmed validity of the theory.

디지털 시그널 프로세서를 이용한 스카라 로봇의 적응-신경제어기 설계 (Design of Adaptive-Neuro Controller of SCARA Robot Using Digital Signal Processor)

  • 한성현
    • 한국생산제조학회지
    • /
    • 제6권1호
    • /
    • pp.7-17
    • /
    • 1997
  • During the past decade, there were many well-established theories for the adaptive control of linear systems, but there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of industrial robot control. Neural network computing methods provide one approach to the development of adaptive and learning behavior in robotic system for manufacturing. Computational neural networks have been demonstrated which exhibit capabilities for supervised learning, matching, and generalization for problems on an experimental scale. Supervised learning could improve the efficiency of training and development of robotic systems. In this paper, a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator using digital signal processors is proposed. Digital signal processors, DSPs, are micro-processors that are developed particularly for fast numerical computations involving sums and products of variables. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method. The proposed adaptive-neuro control scheme is illustrated to be an efficient control scheme for implementation of real-time control for SCARA robot with four-axes by experiment.

  • PDF

Joint Kalman Channel Estimation and Turbo Equalization for MIMO OFDM Systems over Fast Fading Channels

  • Chang, Yu-Kuan;Ueng, Fang-Biau;Shen, Ye-Shun;Liao, Chih-Yuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권11호
    • /
    • pp.5394-5409
    • /
    • 2019
  • The paper investigates a novel detector receiver with Kalman channel information estimator and iterative channel response equalization for MIMO (multi-input multi-output) OFDM (orthogonal frequency division multiplexing) communication systems in fast multipath fading environments. The performances of the existing linear equalizers (LE) are not good enough over most fast fading multipath channels. The existing adaptive equalizer with decision feedback structure (ADFE) can improve the performance of LE. But error-propagation effect seriously degrades the system performance of the ADFE, especially when operated in fast multipath fading environments. By considering the Kalman channel impulse response estimation for the fast fading multipath channels based on CE-BEM (complex exponential basis expansion) model, the paper proposes the iterative receiver with soft decision feedback equalization (SDFE) structure in the fast multipath fading environments. The proposed SDFE detector receiver combats the error-propagation effect for fast multipath fading channels and outperform the existing LE and ADFE. We demonstrate several simulations to confirm the ability of the proposed iterative receiver over the existing receivers.

비동기 FH/MFSK 반복전송 시스템의 성능분석 (A Study on the Performance Analysis of Asynchronous Repeated FH/MFSK System)

  • 지영호;한영렬
    • 한국통신학회논문지
    • /
    • 제13권2호
    • /
    • pp.120-126
    • /
    • 1988
  • 본 논문은 부호분할 다중통신을 위한 비동기 FH/MFSK(Frequency Hopping-Multilevel Frequency Shift Keying) 반복전송 시스템의 성능에 관한 연구이다. 잡음(Noise)과 페이딩(Multipath propagation)이 없고 사용자 상호간의 간섭(Interference)만 존재한다고 가정하고 사용자수 M이 주어졌을 때 실제상황을 모델로 하여 시뮬레이션(Simulation)하여 구한 간섭량과 Random Coding때의 간섭량과 비교하여 거의 차이가 없음을 보였다. 또한 비동기 FH/MFSK 반복전송 시스템의 Bound 형태로 표현된 워드 에러(Word error)확률의 식으로 계산한 값과 실제상황을 모델로 해서 시뮬레이션하여 나온 결과가 잘 일치하고 있음을 보였다.

  • PDF

A New Application of Human Visual Simulated Images in Optometry Services

  • Chang, Lin-Song;Wu, Bo-Wen
    • Journal of the Optical Society of Korea
    • /
    • 제17권4호
    • /
    • pp.328-335
    • /
    • 2013
  • Due to the rapid advancement of auto-refractor technology, most optometry shops provide refraction services. Despite their speed and convenience, the measurement values provided by auto-refractors include a significant degree of error due to psychological and physical factors. Therefore, there is a need for repetitive testing to obtain a smaller mean error value. However, even repetitive testing itself might not be sufficient to ensure accurate measurements. Therefore, research on a method of measurement that can complement auto-refractor measurements and provide confirmation of refraction results needs to be conducted. The customized optometry model described herein can satisfy the above requirements. With existing technologies, using human eye measurement devices to obtain relevant individual optical feature parameters is no longer difficult, and these parameters allow us to construct an optometry model for individual eyeballs. They also allow us to compute visual images produced from the optometry model using the CODE V macro programming language before recognizing the diffraction effects visual images with the neural network algorithm to obtain the accurate refractive diopter. This study attempts to combine the optometry model with the back-propagation neural network and achieve a double check recognition effect by complementing the auto-refractor. Results show that the accuracy achieved was above 98% and that this application could significantly enhance the service quality of refraction.

신경회로망과 실험계획법을 이용한 칩형상 예측 (Prediction of Chip Forms using Neural Network and Experimental Design Method)

  • 한성종;최진필;이상조
    • 한국정밀공학회지
    • /
    • 제20권11호
    • /
    • pp.64-70
    • /
    • 2003
  • This paper suggests a systematic methodology to predict chip forms using the experimental design technique and the neural network. Significant factors determined with ANOVA analysis are used as input variables of the neural network back-propagation algorithm. It has been shown that cutting conditions and cutting tool shapes have distinct effects on the chip forms, so chip breaking. Cutting tools are represented using the Z-map method, which differs from existing methods using some chip breaker parameters. After training the neural network with selected input variables, chip forms are predicted and compared with original chip forms obtained from experiments under same input conditions, showing that chip forms are same at all conditions. To verify the suggested model, one tool not used in training the model is chosen and input to the model. Under various cutting conditions, predicted chip forms agree well with those obtained from cutting experiments. The suggested method could reduce the cost and time significantly in designing cutting tools as well as replacing the“trial-and-error”design method.

Vertical Z-vibration prediction model of ground building induced by subway operation

  • Zhou, Binghua;Xue, Yiguo;Zhang, Jun;Zhang, Dunfu;Huang, Jian;Qiu, Daohong;Yang, Lin;Zhang, Kai;Cui, Jiuhua
    • Geomechanics and Engineering
    • /
    • 제30권3호
    • /
    • pp.273-280
    • /
    • 2022
  • A certain amount of random vibration excitation to subway track is caused by subway operation. This excitation is transmitted through track foundation, tunnel, soil medium, and ground building to the ground and ground structure, causing vibration. The vibration affects ground building. In this study, the results of ANSYS numerical simulation was used to establish back-propagation (BP) neural network model. Moreover, a back-propagation neural network model consisting of five input neurons, one hidden layer, 11 hidden-layer neurons, and three output neurons was used to analyze and calculate the vertical Z-vibration level of New Capital's ground buildings of Qingdao Metro phase I Project (Line M3). The Z-vibration level under different working conditions was calculated from monolithic roadbed, steel-spring floating slab roadbed, and rubber-pad floating slab roadbed under the working condition of center point of 0-100 m. The steel-spring floating slab roadbed was used in the New Capital area to monitor the subway operation vibration in this area. Comparing the monitoring and prediction results, it was found that the prediction results have a good linear relationship with lower error. The research results have good reference and guiding significance for predicting vibration caused by subway operation.

HAI 제어기에 의한 유도전동기 드라이브의 고성능 제어 (High Performance of Induction Motor Drive with HAI Controller)

  • 남수명;고재섭;최정식;정동화
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권4호
    • /
    • pp.154-157
    • /
    • 2006
  • This paper is proposed hybrid artificial intelligent(HAI) controller for high performance of induction motor drive. The design..of this algorithm based on fuzzy-neural network(FNN) controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the adaptive FNN controller is evaluated by analysis for various operating conditions. The results of experiment prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.